Knowledge Center Catalog

Local cover image
Local cover image

Effect of 1BL/1RS translocation on gluten protein fraction quantities and dough rheological properties

By: Contributor(s): Material type: ArticleArticleLanguage: Chinese Publication details: Beijing (China) : Science Press, 2015.ISSN:
  • 0496-3490
Subject(s): Online resources: In: Chinese Society of Crop Science Acta Agronomica Sinica v. 41, no. 11, p. 1648-1656Summary: Understanding the effect of gluten protein fractions on major dough rheological quality traits among 1BL/1RS and non-1BL/1RS lines will facilitate quality improvement in wheat. Fourteen advanced facultative wheat lines derived from leading cultivars Shiluan 02-1 without 1BL/1RS and Zhoumai 16 with 1BL/1RS were grown in Anyang and Jiaozuo in Henan province in the 2012–2013 growing season. The gluten protein fractions were quantified with reversed-phase ultra-performance liquid chromatography (RP-UPLC) and size-exclusion ultra-performance liquid chromatography (SE-UPLC), and their correlations with dough rheological properties were determined. The results showed that Extensograph extensibility and maximum resistance, content of unextractable glutenin polymeric protein, quantity of gluten protein fractions and their ratios received significant influence from the presence of 1BL/1RS translocation and the line within group, whereas Extensograph extension area, content of glutenin and the ratio of gliadin-to-glutenin were predominantly affected by the line within group. Significant correlations were observed between gluten protein fraction quantities and dough rheological parameters in the 1BL/1RS and non-1BL/1RS lines. The 1BL/1RS lines with good dough rheological quality exhibited high content of unextractable glutenin polymeric proteins, 1BL/1RS lines with good dough rheological quality exhibited high content of unextractable glutenin polymeric proteins, which was significantly and positively correlated with Extensograph extension area (r = 0.92, P < 0.001), extensibility (r = 0.92, P < 0.001) and maximum resistance (r = 0.80, P < 0.01). The non-1BL/1RS lines with good dough rheological quality showed low ratio of gliadin-to-glutenin, which was significantly and negatively correlated with Extensograph extension area (r = 0.91, P < 0.001) and maximum resistance (r = 0.88, P < 0.001). These results may guide genotypic selection in early generations to improve the dough rheological properties when 1BL/1RS is used in breeding program.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Understanding the effect of gluten protein fractions on major dough rheological quality traits among 1BL/1RS and non-1BL/1RS lines will facilitate quality improvement in wheat. Fourteen advanced facultative wheat lines derived from leading cultivars Shiluan 02-1 without 1BL/1RS and Zhoumai 16 with 1BL/1RS were grown in Anyang and Jiaozuo in Henan province in the 2012–2013 growing season. The gluten protein fractions were quantified with reversed-phase ultra-performance liquid chromatography (RP-UPLC) and size-exclusion ultra-performance liquid chromatography (SE-UPLC), and their correlations with dough rheological properties were determined. The results showed that Extensograph extensibility and maximum resistance, content of unextractable glutenin polymeric protein, quantity of gluten protein fractions and their ratios received significant influence from the presence of 1BL/1RS translocation and the line within group, whereas Extensograph extension area, content of glutenin and the ratio of gliadin-to-glutenin were predominantly affected by the line within group. Significant correlations were observed between gluten protein fraction quantities and dough rheological parameters in the 1BL/1RS and non-1BL/1RS lines. The 1BL/1RS lines with good dough rheological quality exhibited high content of unextractable glutenin polymeric proteins, 1BL/1RS lines with good dough rheological quality exhibited high content of unextractable glutenin polymeric proteins, which was significantly and positively correlated with Extensograph extension area (r = 0.92, P < 0.001), extensibility (r = 0.92, P < 0.001) and maximum resistance (r = 0.80, P < 0.01). The non-1BL/1RS lines with good dough rheological quality showed low ratio of gliadin-to-glutenin, which was significantly and negatively correlated with Extensograph extension area (r = 0.91, P < 0.001) and maximum resistance (r = 0.88, P < 0.001). These results may guide genotypic selection in early generations to improve the dough rheological properties when 1BL/1RS is used in breeding program.

Global Wheat Program

Text in Chinese

CIMMYT Informa No. 1954

INT2411

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org