Knowledge Center Catalog

Local cover image
Local cover image

Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Amsterdam (Netherlands) : Elsevier, 2012.ISSN:
  • 0378-4290
Subject(s): Online resources: In: Field Crops Research v. 137, p. 261-267Summary: Genetic biofortification to improve zinc (Zn) and iron (Fe) concentrations in bread wheat (Triticum aestivum L.) could reduce micronutrient malnutrition-related problems in the developing world. A breeding program on wheat was started to enhance Zn and Fe concentrations and other essential traits needed in a successful commercial variety. The first set of advanced lines derived from crosses of high yielding wheats with genetic resources possessing high Zn and Fe such as Triticum spelta, landraces and synthetic wheat based on Triticum dicoccon were tested at nine locations in South Asia and Mexico for Zn and Fe concentration, grain yield and other traits. Analyses of variance across locations revealed significant genotypic, environmental and genotype × environment (G × E) effects for grain Zn and Fe concentrations and grain yield. Variances associated with environmental effects were larger than the genotypic and G × E effects for all three traits, suggesting that environmental effects have relatively greater influence. Although G × E interaction was significant, high heritabilities were observed for Zn and Fe concentrations at individual sites and across environments, reflecting non-crossover type of interaction. This trend was confirmed by the high genetic correlations between locations that showed similar ranking of entries across locations, indicating that it is possible to select the best adapted entries with high Zn and Fe concentration. Pooled data across locations showed increments of 28% and 25% over the checks for Zn and Fe. A considerable number of entries exceeded intermediate to full breeding target Zn concentrations, indicating that it is possible to develop Zn-biofortified varieties with competitive yields and other farmer preferred agronomic traits. The positive and moderately high correlation between Zn and Fe concentration suggest good prospects of simultaneous improvement for both micronutrients.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-6843 (Browse shelf(Opens below)) Available
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0378-4290

Genetic biofortification to improve zinc (Zn) and iron (Fe) concentrations in bread wheat (Triticum aestivum L.) could reduce micronutrient malnutrition-related problems in the developing world. A breeding program on wheat was started to enhance Zn and Fe concentrations and other essential traits needed in a successful commercial variety. The first set of advanced lines derived from crosses of high yielding wheats with genetic resources possessing high Zn and Fe such as Triticum spelta, landraces and synthetic wheat based on Triticum dicoccon were tested at nine locations in South Asia and Mexico for Zn and Fe concentration, grain yield and other traits. Analyses of variance across locations revealed significant genotypic, environmental and genotype × environment (G × E) effects for grain Zn and Fe concentrations and grain yield. Variances associated with environmental effects were larger than the genotypic and G × E effects for all three traits, suggesting that environmental effects have relatively greater influence. Although G × E interaction was significant, high heritabilities were observed for Zn and Fe concentrations at individual sites and across environments, reflecting non-crossover type of interaction. This trend was confirmed by the high genetic correlations between locations that showed similar ranking of entries across locations, indicating that it is possible to select the best adapted entries with high Zn and Fe concentration. Pooled data across locations showed increments of 28% and 25% over the checks for Zn and Fe. A considerable number of entries exceeded intermediate to full breeding target Zn concentrations, indicating that it is possible to develop Zn-biofortified varieties with competitive yields and other farmer preferred agronomic traits. The positive and moderately high correlation between Zn and Fe concentration suggest good prospects of simultaneous improvement for both micronutrients.

Genetic Resources Program|Global Wheat Program

Text in English

CIMMYT Informa No. 1816|Elsevier

INT2983|CCJL01|INT0368|INT2917|INT0610

CIMMYT Staff Publications Collection

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org