Knowledge Center Catalog

Local cover image
Local cover image

The physicochemical characterization of unconventional starches and flours used in Asia

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Basel (Switzerland) : MDPI, 2020.ISSN:
  • 2304-8158 (Online)
Subject(s): Online resources: In: Foods v. 9, no. 2, art. 182Summary: Starches and flours used commonly in Asia (tapioca, sweet potato, sago, water chestnut, and high amylose maize starch, red rice and kithul flour) were characterized in terms of their chemical composition, morphological, functional, pasting, thermal, gelling and in vitro digestibility properties. It was observed that the differences in their chemical composition and structure influenced their properties. High amylose maize was the most stable, thus it required the highest gelatinization temperature which was observed in both the differential scanning calorimetry (DSC) and pasting profiles. Kithul flour had a significantly lower rate of digestion (p < 0.05) than the other samples (except for high amylose maize starch). Unlike high amylose maize starch, it had a gelatinization temperature that could be achieved during cooking, and had good gelling properties.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer review

Open Access

Starches and flours used commonly in Asia (tapioca, sweet potato, sago, water chestnut, and high amylose maize starch, red rice and kithul flour) were characterized in terms of their chemical composition, morphological, functional, pasting, thermal, gelling and in vitro digestibility properties. It was observed that the differences in their chemical composition and structure influenced their properties. High amylose maize was the most stable, thus it required the highest gelatinization temperature which was observed in both the differential scanning calorimetry (DSC) and pasting profiles. Kithul flour had a significantly lower rate of digestion (p < 0.05) than the other samples (except for high amylose maize starch). Unlike high amylose maize starch, it had a gelatinization temperature that could be achieved during cooking, and had good gelling properties.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org