Knowledge Center Catalog

Local cover image
Local cover image

Application of multi-layer neural network and hyperspectral reflectance in genome-wide association study for grain yield in bread wheat

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Elsevier, 2022. Amsterdam (Netherlands) :ISSN:
  • 0378-4290
Subject(s): In: Field Crops Research v. 289, art. 108730Summary: Grain yield (GY) is a primary trait for phenotype selection in crop breeding. Rapid and cost-effective prediction of GY before harvest from remote sensing platforms can be integrated with practical breeding activities. In this study, a natural population containing 166 wheat cultivars and elite lines was used for time-series prediction of GY using ground-based hyperspectral remote sensing. Canopy hyperspectral data (350–2500 nm) was collected at the flowering, early grain-filling (EGF), mid grain-filling (MGF), and late grain-filling (LGF) stages under four environments. GY was predicted by using full bands reflectance as input of multi-layer neural network. Genome-wide association study (GWAS) was performed using 373,106 markers from 660 K and 90 K single-nucleotide polymorphism (SNP) arrays in 166 wheat genotypes. Prediction accuracy for GY characterized by R2 values were 0.68, 0.69, 0.76, and 0.65 at flowering, EGF, MGF, and LGF, respectively. Among the 26 loci identified by predicted GY, 13 were located in similar positions to previously reported loci related to yield, and another 13 were potentially new loci. Linear regression (R2) ranged from 0.87 to 0.94 indicating that distinct cumulative effects of favorable alleles detected by predicted GY were increasing as compared to measured GY. This study highlights the feasibility of combining remote sensing with machine learning for wheat breeding decisions and to understand the underlying genetic basis of crop yield.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Grain yield (GY) is a primary trait for phenotype selection in crop breeding. Rapid and cost-effective prediction of GY before harvest from remote sensing platforms can be integrated with practical breeding activities. In this study, a natural population containing 166 wheat cultivars and elite lines was used for time-series prediction of GY using ground-based hyperspectral remote sensing. Canopy hyperspectral data (350–2500 nm) was collected at the flowering, early grain-filling (EGF), mid grain-filling (MGF), and late grain-filling (LGF) stages under four environments. GY was predicted by using full bands reflectance as input of multi-layer neural network. Genome-wide association study (GWAS) was performed using 373,106 markers from 660 K and 90 K single-nucleotide polymorphism (SNP) arrays in 166 wheat genotypes. Prediction accuracy for GY characterized by R2 values were 0.68, 0.69, 0.76, and 0.65 at flowering, EGF, MGF, and LGF, respectively. Among the 26 loci identified by predicted GY, 13 were located in similar positions to previously reported loci related to yield, and another 13 were potentially new loci. Linear regression (R2) ranged from 0.87 to 0.94 indicating that distinct cumulative effects of favorable alleles detected by predicted GY were increasing as compared to measured GY. This study highlights the feasibility of combining remote sensing with machine learning for wheat breeding decisions and to understand the underlying genetic basis of crop yield.

Text in English

Rasheed, A. : No CIMMYT Affiliation

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org