Knowledge Center Catalog

Local cover image
Local cover image

Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.)

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Nature Publishing Group, 2022. London (United Kingdom) :ISSN:
  • 2045-2322 (Online)
Subject(s): Online resources: In: Scientific Reports v. 12, no. 1, art. 7037Summary: Malnutrition due to micronutrients and protein deficiency is recognized among the major global health issues. Genetic biofortification of wheat is a cost-effective and sustainable strategy to mitigate the global micronutrient and protein malnutrition. Genomic regions governing grain zinc concentration (GZnC), grain iron concentration (GFeC), grain protein content (GPC), test weight (TW), and thousand kernel weight (TKW) were investigated in a set of 184 diverse bread wheat genotypes through genome-wide association study (GWAS). The GWAS panel was genotyped using Breeders' 35 K Axiom Array and phenotyped in three different environments during 2019–2020. A total of 55 marker-trait associations (MTAs) were identified representing all three sub-genomes of wheat. The highest number of MTAs were identified for GPC (23), followed by TKW (15), TW (11), GFeC (4), and GZnC (2). Further, a stable SNP was identified for TKW, and also pleiotropic regions were identified for GPC and TKW. In silico analysis revealed important putative candidate genes underlying the identified genomic regions such as F-box-like domain superfamily, Zinc finger CCCH-type proteins, Serine-threonine/tyrosine-protein kinase, Histone deacetylase domain superfamily, and SANT/Myb domain superfamily proteins, etc. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Malnutrition due to micronutrients and protein deficiency is recognized among the major global health issues. Genetic biofortification of wheat is a cost-effective and sustainable strategy to mitigate the global micronutrient and protein malnutrition. Genomic regions governing grain zinc concentration (GZnC), grain iron concentration (GFeC), grain protein content (GPC), test weight (TW), and thousand kernel weight (TKW) were investigated in a set of 184 diverse bread wheat genotypes through genome-wide association study (GWAS). The GWAS panel was genotyped using Breeders' 35 K Axiom Array and phenotyped in three different environments during 2019–2020. A total of 55 marker-trait associations (MTAs) were identified representing all three sub-genomes of wheat. The highest number of MTAs were identified for GPC (23), followed by TKW (15), TW (11), GFeC (4), and GZnC (2). Further, a stable SNP was identified for TKW, and also pleiotropic regions were identified for GPC and TKW. In silico analysis revealed important putative candidate genes underlying the identified genomic regions such as F-box-like domain superfamily, Zinc finger CCCH-type proteins, Serine-threonine/tyrosine-protein kinase, Histone deacetylase domain superfamily, and SANT/Myb domain superfamily proteins, etc. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org