Knowledge Center Catalog

Local cover image
Local cover image

Improving the efficiency of colchicine-based chromosomal doubling of maize haploids

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Basel (Switzerland) : MDPI, 2020.ISSN:
  • 2223-7747 (Online)
Subject(s): Online resources: In: Plants v. 9, no. 4, art. 459Summary: Production and use of doubled haploids (DH) is becoming an essential part of maize breeding programs worldwide as DH lines offer several advantages in line development and evaluation. One of the critical steps in maize DH line production is doubling the chromosomes of in vivo-derived haploids so that naturally sterile haploids become reproductively fertile diploids (DH) to produce seed. This step of artificially doubling the chromosomes is labor-intensive and costly; hence, optimizing protocols to improve the doubling success is critical for achieving efficiencies in the DH production pipelines. Immersion of 3–4-day old germinating haploid seedlings in colchicine solution is commonly used for chromosome doubling in large-scale maize DH line production. This manuscript presents a new method of colchicine application to haploid seedlings that showed superior doubling rates compared to other methods like standard seedling immersion, seed immersion, root immersion, and direct application of colchicine solution to the seedlings at V2 stage in the greenhouse trays. The new method involves immersing the crown region of the haploid seedlings along with all the seedling roots at V2 stage in the colchicine solution. Further experiments to optimize this method indicated that increasing colchicine concentration had a very positive effect on overall success rate in chromosomal doubling, while not drastically affecting survival rate. The optimized method showed on average 5.6 times higher overall success rate (OSR) compared to the standard haploid seedling immersion method which was the second-best method in our experiments. This improved method of colchicine application saves resources by reducing the number of haploids to be generated and handled in a maize DH production pipeline.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Production and use of doubled haploids (DH) is becoming an essential part of maize breeding programs worldwide as DH lines offer several advantages in line development and evaluation. One of the critical steps in maize DH line production is doubling the chromosomes of in vivo-derived haploids so that naturally sterile haploids become reproductively fertile diploids (DH) to produce seed. This step of artificially doubling the chromosomes is labor-intensive and costly; hence, optimizing protocols to improve the doubling success is critical for achieving efficiencies in the DH production pipelines. Immersion of 3–4-day old germinating haploid seedlings in colchicine solution is commonly used for chromosome doubling in large-scale maize DH line production. This manuscript presents a new method of colchicine application to haploid seedlings that showed superior doubling rates compared to other methods like standard seedling immersion, seed immersion, root immersion, and direct application of colchicine solution to the seedlings at V2 stage in the greenhouse trays. The new method involves immersing the crown region of the haploid seedlings along with all the seedling roots at V2 stage in the colchicine solution. Further experiments to optimize this method indicated that increasing colchicine concentration had a very positive effect on overall success rate in chromosomal doubling, while not drastically affecting survival rate. The optimized method showed on average 5.6 times higher overall success rate (OSR) compared to the standard haploid seedling immersion method which was the second-best method in our experiments. This improved method of colchicine application saves resources by reducing the number of haploids to be generated and handled in a maize DH production pipeline.

Maize CRP FP2 - Novel tools, technologies and traits for improving genetic gains and breeding efficiency FP3 - Stress resilient and nutritious maize

Text in English

Martinez, L. : Not in IRS Staff list but CIMMYT Affiliation

Ochieng, J.A.W. : Not in IRS Staff list but CIMMYT Affiliation

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org