Knowledge Center Catalog

Local cover image
Local cover image

Cloning and phylogenetic analysis of low-molecular-weight glutenin subunit genes at Glu-B3 locus in common wheat relative species

By: Contributor(s): Material type: ArticleArticleLanguage: Chinese Publication details: Beijing (China) : Science Press, 2010.ISSN:
  • 0253-9772
Subject(s): Online resources: In: Hereditas (Beijing) v. 32, no. 6, p. 613-624Summary: The common wheat relative species are important germplasm for wheat breeding. In the present study, novel allelic variants at Glu-B3 locus were cloned to provide gene resources for wheat quality improvement. Four Glu-B3-locus specific primer sets LB1F/LB1R, LB2F/LB2R, LB3F/LB3R, and LB4F/LB4R were employed to isolate novel allelic variants of GluB3-1, GluB3-2, GluB3-3, and GluB3-4 from seven common wheat relative species, i.e., T. durum, T. dicoccum, T. dicoccoides, Aegilops longissima, Ae. searsii, Ae. Bicornis, and Ae. speltoides, and the software MEGA 4 was used to construct a phylogenetic tree. In total, 16 novel allelic variants of GluB3-1, GluB3-3, and GluB3-4 genes were isolated from the seven common wheat relative species, designated GluB3-16, GluB3-35, GluB3-36, GluB3-37, GluB3-46, GluB3-47, GluB3-48, GluB3-49, GluB3-410, GluB3-411, GluB3-412, GluB3-413, GluB3-414, GluB3-415, GluB3-416 and GluB3-417, respectively. In detail, GluB3-16 was cloned from T. dicoccoides with LB1F/LB1R, and the molecular weight of the deduced amino acid was 39.2 kDa. GluB3-35, GluB3-36, and GluB3-37 were isolated from T. durum and T. dicoccum with the primer set LB3F/LB3R, and the molecular weights of their deduced peptides were 44.5 kDa (GluB3-36) and 44.6 kDa (GluB3-35 and GluB3-37). The molecular weight of deduced peptides of GluB3-4 ranged from 38.6 kDa (GluB3-414) to 42.5 kDa (GluB3-413). All the 16 new allelic variants showed a single open reading frame (ORF), and their deduced amino-acid sequences had a typical sequence structure of LMW-GS. The allelic variants at Glu-B3 locus identified in common wheat relative species provide potential gene resources for wheat quality breeding and gene transformation. The results suggested that these Glu-B3 genes originated from different evolution processes.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-6113 (Browse shelf(Opens below)) Available
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0253-9772

The common wheat relative species are important germplasm for wheat breeding. In the present study, novel allelic variants at Glu-B3 locus were cloned to provide gene resources for wheat quality improvement. Four Glu-B3-locus specific primer sets LB1F/LB1R, LB2F/LB2R, LB3F/LB3R, and LB4F/LB4R were employed to isolate novel allelic variants of GluB3-1, GluB3-2, GluB3-3, and GluB3-4 from seven common wheat relative species, i.e., T. durum, T. dicoccum, T. dicoccoides, Aegilops longissima, Ae. searsii, Ae. Bicornis, and Ae. speltoides, and the software MEGA 4 was used to construct a phylogenetic tree. In total, 16 novel allelic variants of GluB3-1, GluB3-3, and GluB3-4 genes were isolated from the seven common wheat relative species, designated GluB3-16, GluB3-35, GluB3-36, GluB3-37, GluB3-46, GluB3-47, GluB3-48, GluB3-49, GluB3-410, GluB3-411, GluB3-412, GluB3-413, GluB3-414, GluB3-415, GluB3-416 and GluB3-417, respectively. In detail, GluB3-16 was cloned from T. dicoccoides with LB1F/LB1R, and the molecular weight of the deduced amino acid was 39.2 kDa. GluB3-35, GluB3-36, and GluB3-37 were isolated from T. durum and T. dicoccum with the primer set LB3F/LB3R, and the molecular weights of their deduced peptides were 44.5 kDa (GluB3-36) and 44.6 kDa (GluB3-35 and GluB3-37). The molecular weight of deduced peptides of GluB3-4 ranged from 38.6 kDa (GluB3-414) to 42.5 kDa (GluB3-413). All the 16 new allelic variants showed a single open reading frame (ORF), and their deduced amino-acid sequences had a typical sequence structure of LMW-GS. The allelic variants at Glu-B3 locus identified in common wheat relative species provide potential gene resources for wheat quality breeding and gene transformation. The results suggested that these Glu-B3 genes originated from different evolution processes.

Global Wheat Program

Text in Chinese

INT2411

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org