Influence of low molecular weight Glutenins on viscoelastic properties of intact wheat Kernels and their relation to functional properties of wheat dough
Material type: ArticleLanguage: English Publication details: USA : Wiley, 2009.ISSN:- 1943-3638 (Online)
Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Article | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | CIS-5628 (Browse shelf(Opens below)) | Available |
Browsing CIMMYT Knowledge Center: John Woolston Library shelves, Collection: CIMMYT Staff Publications Collection Close shelf browser (Hides shelf browser)
Peer review
Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0009-0352
The mechanical and viscoelastic properties of intact wheat kernels of 36 wheat cultivars differing in low molecular weight glutenin subunit (LMW-GS) composition (loci Glu-A3, Glu-B3, and Glu-D3) were evaluated using load-compression tests. Comparison among genotypic groups representing Glu-3 allelic variants showed that groups representing the alleles Glu-A3 b, c, and d; Glu-B3 d, g, and h; and Glu-D3 a, b, and d, had harder kernel texture, higher kernel elastic work and larger gluten strength-related parameters than those possessing alleles Glu-A3 e; Glu-B3 f, i and j (translocation 1B/1R); and Glu-D3 d. Modulus of elasticity (stress to strain ratio) showed low values (111.9?168.8 MPa) for allelic groups possessing poor elastic properties (Glu-A3 e; Glu-B3 f, i, and j; and Glu-D3 d), and high values (179.8?222.6 MPa) for allelic groups possessing high kernel elastic properties (Glu-A3 b c, and d; Glu-B3 d, g, and h; and Glu-D3 a, b and c). The highest values for gluten strength-related parameters (SDS-sedimentation, dough mixing time, and dough strength [W]) corresponded to allelic groups Glu-A3 d; Glu-B3 d and g; and Glu-D3 d, while the lowest corresponded to Glu-A3 e and Glu-B3 j. No significant differences were observed among groups with regard to gluten extensibility parameters; however, the highest P/L value (least extensibility) corresponded to Glu-B3 j, which indicates presence of 1B/1R translocation. Except for the Glu-B3 j (translocation 1B/1R) allele, which presented more variation within samples, a general relationship between kernel viscoelastic properties and dough viscoelastic properties was observed; samples showing higher elastic work to plastic work ratio (E/P) tended to possess better gluten strength than cultivars with low E/P ratio.
Global Wheat Program
Text in English
INT0368