Normal view MARC view ISBD view

Molecular characterization of Asian maize inbread lines by multiple laboratories

By: George, M.L.C.
Contributor(s): Cao, M [coaut.] | Dahlan, M [coaut.] | Hoisington, D.A [coaut.] | Li, W [coaut.] | Pabendon, M [coaut.] | Regalado, E [coaut.] | Warburton, M.L [coaut.] | Xianchun Xia [coaut.].
Material type: materialTypeLabelArticlePublisher: 2004ISSN: 1432-2242 (Revista en electrónico).Subject(s): Asia | Crossbreeding | Diversification | Inbred lines | Maize | Molecular genetics | Tropical zones | Yields AGROVOC | Agricultural research AGROVOCOnline resources: Access only for CIMMYT Staff In: Theoretical and Applied Genetics v. 109, no. 1, p. 80-91629960Summary: This study focuses on the standardization of techniques across laboratories to enable multiple datasets to be compared and combined in order to obtain reliable and robust wide-scale patterns of diversity. A set of protocols using a core collection of simple sequence repeat (SSR) markers, reference lines and standard alleles, plus a common system of allele nomenclature, was adopted in the study of maize genetic diversity in a network of laboratories in Asia. Pair-wise allele comparisons of the reference lines, done to assess the general agreement between datasets from four laboratories, showed error rates (raw) ranging from 5.8% to 9.7%, which were reduced to less than 8% after adjustments of correctable errors, and further reduced to less than 6% after the exclusion of all markers with greater than 10% individual error rates. Overall, 45% of the total mismatches were due to frameshift errors, 39% to wrong allele size, 15% to failed amplification and 1% to extra alleles. Higher genetic similarity values of the reference lines were achieved using fewer markers with data of higher quality rather than with more markers of questionable quality. Cluster analysis of the merged datasets showed the lines from southern China to be highly diverse, falling into six of the seven clusters observed and all well represented by tester lines. The lines from Indonesia fell into five of six groups, with two main groups represented by tester lines. The CIMMYT lines developed for the Asian region showed a relatively narrow genetic base, falling in two out of seven and in three out of six clusters in China and Indonesia, respectively. In contrast to the case in southern China where 95% of the lines clustered separately from the CIMMYT lines, lines in the Indonesian breeding program show a closer relationship with the CIMMYT lines, reflecting a long history of germplasm exchange.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Copy number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection CIS-4048 (Browse shelf) 1 Available 629960
Total holds: 0

DOI 10.1007/s00122-004-1626-8

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0040-5752

This study focuses on the standardization of techniques across laboratories to enable multiple datasets to be compared and combined in order to obtain reliable and robust wide-scale patterns of diversity. A set of protocols using a core collection of simple sequence repeat (SSR) markers, reference lines and standard alleles, plus a common system of allele nomenclature, was adopted in the study of maize genetic diversity in a network of laboratories in Asia. Pair-wise allele comparisons of the reference lines, done to assess the general agreement between datasets from four laboratories, showed error rates (raw) ranging from 5.8% to 9.7%, which were reduced to less than 8% after adjustments of correctable errors, and further reduced to less than 6% after the exclusion of all markers with greater than 10% individual error rates. Overall, 45% of the total mismatches were due to frameshift errors, 39% to wrong allele size, 15% to failed amplification and 1% to extra alleles. Higher genetic similarity values of the reference lines were achieved using fewer markers with data of higher quality rather than with more markers of questionable quality. Cluster analysis of the merged datasets showed the lines from southern China to be highly diverse, falling into six of the seven clusters observed and all well represented by tester lines. The lines from Indonesia fell into five of six groups, with two main groups represented by tester lines. The CIMMYT lines developed for the Asian region showed a relatively narrow genetic base, falling in two out of seven and in three out of six clusters in China and Indonesia, respectively. In contrast to the case in southern China where 95% of the lines clustered separately from the CIMMYT lines, lines in the Indonesian breeding program show a closer relationship with the CIMMYT lines, reflecting a long history of germplasm exchange.

Research and Partnership Program

English

0406|Springer|AL-Maize Program

INT2451

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org