Knowledge Center Catalog

Local cover image
Local cover image

Environmental data provide marginal benefit for predicting climate adaptation

By: Contributor(s): Material type: ArticleLanguage: English Publication details: San Francisco, California (United States of America) Public Library of Science, 2025.ISSN:
  • 1553-7404
  • 1553-7404 (Online)
Subject(s): Online resources: In: PLoS Genetics San Francisco, California (United States of America) : Public Library of Science, 2025 v. 21, no. 6, e1011714Summary: Climate change poses a major challenge for both natural and cultivated species. Genomic tools are increasingly used in both conservation and breeding to identify adaptive loci that can be used to guide management in future climates. Here, we study the utility of climate and genomic data for identifying promising alleles using common gardens of a large, geographically diverse sample of traditional maize varieties to evaluate multiple approaches. First, we used genotype data to predict environmental characteristics of germplasm collections to identify varieties that may be pre-adapted to target environments. Second, we used environmental GWAS (envGWAS) to identify loci associated with historical divergence along climatic gradients. Finally, we compared the value of environmental data and envGWAS-prioritized loci to genomic data for prioritizing traditional varieties. We find that maize yield traits are best predicted by genome-wide relatedness and population structure, and that incorporating envGWAS-identified variants or environment-of-origin provide little additional predictive information. While our results suggest that environmental data provide limited benefit in predicting fitness-related phenotypes, environmental GWAS is nonetheless a potentially powerful approach to identify individual novel loci associated with adaptation, especially when coupled with high density genotyping.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Climate change poses a major challenge for both natural and cultivated species. Genomic tools are increasingly used in both conservation and breeding to identify adaptive loci that can be used to guide management in future climates. Here, we study the utility of climate and genomic data for identifying promising alleles using common gardens of a large, geographically diverse sample of traditional maize varieties to evaluate multiple approaches. First, we used genotype data to predict environmental characteristics of germplasm collections to identify varieties that may be pre-adapted to target environments. Second, we used environmental GWAS (envGWAS) to identify loci associated with historical divergence along climatic gradients. Finally, we compared the value of environmental data and envGWAS-prioritized loci to genomic data for prioritizing traditional varieties. We find that maize yield traits are best predicted by genome-wide relatedness and population structure, and that incorporating envGWAS-identified variants or environment-of-origin provide little additional predictive information. While our results suggest that environmental data provide limited benefit in predicting fitness-related phenotypes, environmental GWAS is nonetheless a potentially powerful approach to identify individual novel loci associated with adaptation, especially when coupled with high density genotyping.

Text in English

Bill & Melinda Gates Foundation (BMGF) United States Department of Agriculture (USDA) Secretaría de Agricultura y Desarrollo Rural (SADER) Breeding for Tomorrow

https://hdl.handle.net/10568/179105

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org