Knowledge Center Catalog

Local cover image
Local cover image

Optimization of sparse phenotyping strategy in multi-environmental trials in maize

By: Contributor(s): Material type: ArticleLanguage: English Publication details: Germany : Springer, 2025.ISSN:
  • 0040-5752
  • 1432-2242 (Online)
Subject(s): Online resources: In: Theoretical and Applied Genetics Germany : Springer, 2025. v. 138, art. 62Summary: The phenotyping needs to be optimized and aims to achieve desired precision at low costs because selection decisions are mainly based on multi-environmental trials. Optimization of sparse phenotyping is possible in plant breeding by applying relationship measurements and genomic prediction. Our research utilized genomic data and relationship measurements between the training (full testing genotypes) and testing sets (sparse testing genotypes) to optimize the allocation of genotypes to subsets in sparse testing. Different sparse phenotyping designs were mimicked based on the percentage (%) of lines in the full set, the number of partially tested lines, the number of tested environments, and balanced and unbalanced methods for allocating the lines among the environments. The eight relationship measurements were utilized to calculate the relatedness between full and sparse set genotypes. The results demonstrate that balanced and allocating 50% of lines to the full set designs have shown a higher Pearson correlation in terms of accuracy measurements than assigning the 30% of lines to the full set and balanced sparse methods. By reducing untested environments per sparse set, results enhance the accuracy of measurements. The relationship measurements exhibit a low significant Pearson correlation ranging from 0.20 to 0.31 using the accuracy measurements in sparse phenotyping experiments. The positive Pearson correlation shows that the maximization of the accuracy measurements can be helpful to the optimization of the line allocation on sparse phenotyping designs.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open access

The phenotyping needs to be optimized and aims to achieve desired precision at low costs because selection decisions are mainly based on multi-environmental trials. Optimization of sparse phenotyping is possible in plant breeding by applying relationship measurements and genomic prediction. Our research utilized genomic data and relationship measurements between the training (full testing genotypes) and testing sets (sparse testing genotypes) to optimize the allocation of genotypes to subsets in sparse testing. Different sparse phenotyping designs were mimicked based on the percentage (%) of lines in the full set, the number of partially tested lines, the number of tested environments, and balanced and unbalanced methods for allocating the lines among the environments. The eight relationship measurements were utilized to calculate the relatedness between full and sparse set genotypes. The results demonstrate that balanced and allocating 50% of lines to the full set designs have shown a higher Pearson correlation in terms of accuracy measurements than assigning the 30% of lines to the full set and balanced sparse methods. By reducing untested environments per sparse set, results enhance the accuracy of measurements. The relationship measurements exhibit a low significant Pearson correlation ranging from 0.20 to 0.31 using the accuracy measurements in sparse phenotyping experiments. The positive Pearson correlation shows that the maximization of the accuracy measurements can be helpful to the optimization of the line allocation on sparse phenotyping designs.

Text in English

Accelerating Genetic Gains in Maize and Wheat (AGG) Foundation for Food & Agriculture Research (FFAR) United States Agency for International Development (USAID) Foreign, Commonwealth & Development Office (FCDO) Breeding for Tomorrow

https://hdl.handle.net/10568/179243

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org