Knowledge Center Catalog

Local cover image
Local cover image

Comparison of sequencing-based and array-based genotyping platforms for genomic prediction of maize hybrid performance

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Elsevier, 2023. Netherlands :ISSN:
  • 2214-5141
Subject(s): Online resources: In: Crop Journal v. 11, no. 2, p. 490-498Summary: Genomic selection (GS) is a powerful tool for improving genetic gain in maize breeding. However, its routine application in large-scale breeding pipelines is limited by the high cost of genotyping platforms. Although sequencing-based and array-based genotyping platforms have been used for GS, few studies have compared prediction performance among platforms. In this study, we evaluated the predictabilities of four agronomic traits in 305 maize hybrids derived from 149 parental lines subjected to genotyping by sequencing (GBS), a 40K SNP array, and target sequence capture (TSC) using eight GS models. The GBS marker dataset yielded the highest predictabilities for all traits, followed by TSC and SNP array datasets. We investigated the effect of marker density and statistical models on predictability among genotyping platforms and found that 1K SNPs were sufficient to achieve comparable predictabilities to 10K and all SNPs, and BayesB, GBLUP, and RKHS performed well, while XGBoost performed poorly in most cases. We also selected significant SNP subsets using genome-wide association study (GWAS) analyses in three panels to predict hybrid performance. GWAS facilitated selecting effective SNP subsets for GS and thus reduced genotyping cost, but depended heavily on the GWAS panel. We conclude that there is still room for optimization of the existing SNP array, and using genotyping by target sequencing (GBTS) techniques to integrate a few functional markers identified by GWAS into the 1K SNP array holds great promise of being an effective strategy for developing desirable GS breeding arrays.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Genomic selection (GS) is a powerful tool for improving genetic gain in maize breeding. However, its routine application in large-scale breeding pipelines is limited by the high cost of genotyping platforms. Although sequencing-based and array-based genotyping platforms have been used for GS, few studies have compared prediction performance among platforms. In this study, we evaluated the predictabilities of four agronomic traits in 305 maize hybrids derived from 149 parental lines subjected to genotyping by sequencing (GBS), a 40K SNP array, and target sequence capture (TSC) using eight GS models. The GBS marker dataset yielded the highest predictabilities for all traits, followed by TSC and SNP array datasets. We investigated the effect of marker density and statistical models on predictability among genotyping platforms and found that 1K SNPs were sufficient to achieve comparable predictabilities to 10K and all SNPs, and BayesB, GBLUP, and RKHS performed well, while XGBoost performed poorly in most cases. We also selected significant SNP subsets using genome-wide association study (GWAS) analyses in three panels to predict hybrid performance. GWAS facilitated selecting effective SNP subsets for GS and thus reduced genotyping cost, but depended heavily on the GWAS panel. We conclude that there is still room for optimization of the existing SNP array, and using genotyping by target sequencing (GBTS) techniques to integrate a few functional markers identified by GWAS into the 1K SNP array holds great promise of being an effective strategy for developing desirable GS breeding arrays.

Text in English

Rodriguez-Chanona, E. : Not in IRS staff list but CIMMYT Affiliation

Guadarrama, A. : Not in IRS staff list but CIMMYT Affiliation

Kehel, Z. : Not in IRS staff list but CIMMYT Affiliation

Chepetla, D. : Not in IRS staff list but CIMMYT Affiliation

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org