Knowledge Center Catalog

Local cover image
Local cover image

Tolerance to excess moisture in maize (Zea mays L.) : susceptible crop stages and identification of tolerant genotypes

By: Contributor(s): Material type: ArticleLanguage: English Publication details: Netherlands : Elsevier, 2004.ISSN:
  • 0378-4290
Subject(s): Online resources: In: Field Crops Research Amsterdam (Netherlands) : Elsevier, 2004. v. 90, no. 2-3, p. 189-202630271Summary: Excess moisture (water-logging) during the summer–rainy season is one of the major production constraints for maize (Zea mays L.) in a large area of Southeast Asia. Identification and development of genotypes capable of withstanding the stress conditions could be an ideal and affordable approach suitable for resource poor maize-growing farmers of such areas. We attempted to identify the most susceptible/critical crop stage(s) of maize for excess moisture stress, and to develop a screening technique and selection strategies for identification of germplasm tolerant to excess moisture stress. Among the four crop stages, i.e. early seedling (V2), knee-high (V7), tasseling (VT) and milk stage (R1), V2 was found to be highly susceptible, followed by the V7 stage. A screening technique (cup method) was developed/standardized, and was found to be an efficient technique for large-scale screening of maize genotypes against excess soil moisture stress. Germplasm was screened using this technique followed by field evaluation at the V7 growth stage (seventh leaf visible). Excess soil moisture stress severely affected various growth and biochemical parameters, impaired anthesis and silking, and eventually resulted in poor kernel development and yield. However, remarkable variability was found among the genotypes studied. Genotypes with good carbohydrate accumulation in stem tissues, moderate stomatal conductance, <5 days ASI, high root porosity, and early brace root development ability have been found to have good tolerance against the hypoxia/anoxia caused by excess soil moisture conditions.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Barcode
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-4204 (Browse shelf(Opens below)) 1 Available 630271
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0378-4290

Excess moisture (water-logging) during the summer–rainy season is one of the major production constraints for maize (Zea mays L.) in a large area of Southeast Asia. Identification and development of genotypes capable of withstanding the stress conditions could be an ideal and affordable approach suitable for resource poor maize-growing farmers of such areas. We attempted to identify the most susceptible/critical crop stage(s) of maize for excess moisture stress, and to develop a screening technique and selection strategies for identification of germplasm tolerant to excess moisture stress. Among the four crop stages, i.e. early seedling (V2), knee-high (V7), tasseling (VT) and milk stage (R1), V2 was found to be highly susceptible, followed by the V7 stage. A screening technique (cup method) was developed/standardized, and was found to be an efficient technique for large-scale screening of maize genotypes against excess soil moisture stress. Germplasm was screened using this technique followed by field evaluation at the V7 growth stage (seventh leaf visible). Excess soil moisture stress severely affected various growth and biochemical parameters, impaired anthesis and silking, and eventually resulted in poor kernel development and yield. However, remarkable variability was found among the genotypes studied. Genotypes with good carbohydrate accumulation in stem tissues, moderate stomatal conductance, <5 days ASI, high root porosity, and early brace root development ability have been found to have good tolerance against the hypoxia/anoxia caused by excess soil moisture conditions.

Global Maize Program

Text in English

0410|Elsevier|AL-Maize Program

INT2823

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org