Knowledge Center Catalog

Local cover image
Local cover image

High-resolution airborne hyperspectral imagery for assessing yield, biomass, grain N concentration, and N output in spring wheat

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Basel (Switzerland) : MDPI, 2021.ISSN:
  • 2072-4292 (Online)
Subject(s): Online resources: In: Remote Sensing v. 13, no. 7, art. 1373Summary: Remote sensing allows fast assessment of crop monitoring over large areas; however, questions regarding uncertainty in crop parameter prediction and application to nitrogen (N) fertilization remain open. The objective of this study was to optimize of remote sensing spectral information for its application to grain yield (GY), biomass, grain N concentration (GNC), and N output assessment, and decision making on spring wheat fertilization. Spring wheat (Triticum turgidum L.) field experiments testing two tillage treatments, two irrigation levels and six N treatments were conducted in Northwest Mexico over four consecutive years. Hyperspectral images were acquired through 27 airborne flight campaigns. At harvest, GY, biomass, GNC and N output were determined. Spectral exploratory analysis was used to identify the best wavelength combinations, the most suitable vegetation indices (VIs) and the best growth stages to assess the agronomic variables. The relationship between the spectral information and the agronomic measurements was evaluated by the coefficient of determination (R2) and the root mean square error (RMSE). The ability of the indices to guide fertilizer recommendation was assessed through an error analysis based on the N sufficiency index. GY was better assessed from the end of flowering to the early milk stage by VIs based on the combination of bands from near infrared radiation/visible and from near infrared radiation/red-edge regions (R2 > 0.6; RMSE < 700 kg ha-1). N output was efficiently assessed by a combination of bands from near infrared radiation/red-edge at booting (R2 > 0.7; RMSE < 9 kg N ha-1). The GNC was better estimated by VIs combining bands in near infrared radiation/red-edge at early milk, but with great variability among the years studied. Some VIs were promising for guiding fertilizer recommendation for increasing GNC, but there was not a single index providing reliable recommendations every year. This study highlights the potential of remote sensing imagery to assess GY and N output in spring wheat, but the identification of GNC responsive sites needs to be improved.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Remote sensing allows fast assessment of crop monitoring over large areas; however, questions regarding uncertainty in crop parameter prediction and application to nitrogen (N) fertilization remain open. The objective of this study was to optimize of remote sensing spectral information for its application to grain yield (GY), biomass, grain N concentration (GNC), and N output assessment, and decision making on spring wheat fertilization. Spring wheat (Triticum turgidum L.) field experiments testing two tillage treatments, two irrigation levels and six N treatments were conducted in Northwest Mexico over four consecutive years. Hyperspectral images were acquired through 27 airborne flight campaigns. At harvest, GY, biomass, GNC and N output were determined. Spectral exploratory analysis was used to identify the best wavelength combinations, the most suitable vegetation indices (VIs) and the best growth stages to assess the agronomic variables. The relationship between the spectral information and the agronomic measurements was evaluated by the coefficient of determination (R2) and the root mean square error (RMSE). The ability of the indices to guide fertilizer recommendation was assessed through an error analysis based on the N sufficiency index. GY was better assessed from the end of flowering to the early milk stage by VIs based on the combination of bands from near infrared radiation/visible and from near infrared radiation/red-edge regions (R2 > 0.6; RMSE < 700 kg ha-1). N output was efficiently assessed by a combination of bands from near infrared radiation/red-edge at booting (R2 > 0.7; RMSE < 9 kg N ha-1). The GNC was better estimated by VIs combining bands in near infrared radiation/red-edge at early milk, but with great variability among the years studied. Some VIs were promising for guiding fertilizer recommendation for increasing GNC, but there was not a single index providing reliable recommendations every year. This study highlights the potential of remote sensing imagery to assess GY and N output in spring wheat, but the identification of GNC responsive sites needs to be improved.

Text in English

Gonzalez-Perez, L. : Not in IRS Staff list but CIMMYT Affiliation

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org