Knowledge Center Catalog

Local cover image
Local cover image

Method for identifying maize haploid seeds by applying diffuse transmission near-infrared spectroscopy

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: USA : SAGE Publications, 2018.ISSN:
  • 0003-7028
  • 1943-3530 (Online)
Subject(s): In: Applied Spectroscopy v. 72, no. 4, p. 611-617Summary: The identification for haploid seeds is an important process in maize haploid breeding. Thanks to the diffuse transmission (DT) technology of near-infrared (NIR) spectroscopy, maize haploid seeds can be selected automatically using NIR spectrum features. However, the NIR spectra of maize seeds contain a large number of redundant features and noise that will degrade the identification performance. We resolved this problem by designing a low dimension and uniform space of seed spectrum features to improve the collected spectra. The zero-phase component analysis (ZCA) method was utilized to uniform the feature space and the partial least squares regression (PLSR) was employed to design the low dimension space. Then, by using the classifier of back propagation neural network (BPNN), a high qualitative identification method was developed for selecting maize haploid seeds. The study results demonstrate that the average accuracy of the proposed method is outstanding (96.16%) with a minor standard deviation (SD) compared with other methods. Therefore, our proposed method is potentially useful for automatically identifying maize haploid seeds.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer review

The identification for haploid seeds is an important process in maize haploid breeding. Thanks to the diffuse transmission (DT) technology of near-infrared (NIR) spectroscopy, maize haploid seeds can be selected automatically using NIR spectrum features. However, the NIR spectra of maize seeds contain a large number of redundant features and noise that will degrade the identification performance. We resolved this problem by designing a low dimension and uniform space of seed spectrum features to improve the collected spectra. The zero-phase component analysis (ZCA) method was utilized to uniform the feature space and the partial least squares regression (PLSR) was employed to design the low dimension space. Then, by using the classifier of back propagation neural network (BPNN), a high qualitative identification method was developed for selecting maize haploid seeds. The study results demonstrate that the average accuracy of the proposed method is outstanding (96.16%) with a minor standard deviation (SD) compared with other methods. Therefore, our proposed method is potentially useful for automatically identifying maize haploid seeds.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org