Knowledge Center Catalog

Local cover image
Local cover image

EXGEP : a framework for predicting genotype-by-environment interactions using ensembles of explainable machine-learning models

By: Contributor(s): Material type: ArticleLanguage: English Publication details: United Kingdom : Oxford University Press, 2025.ISSN:
  • 1467-5463
  • 1477-4054 (Onine)
Subject(s): Online resources: In: Briefings in Bioinformatics United Kingdom : Oxford University Press, 2025 v. 26, no. 4, art. bbaf414Summary: Phenotypic variation results from the combination of genotype, the environment, and their interaction. The ability to quantify the relative contributions of genetic and environmental factors to complex traits can help in breeding crops with superior adaptability for growth in varied environments. Here, we developed and extensively evaluated the performance of an explainable machine-learning framework named explainable genotype-by-environment interactions prediction (EXGEP) to accurately predict the grain yield in crops. To assess the performance of EXGEP, we applied it to a dataset comprising 70 693 phenotypic records of grain yield traits for 3793 hybrids (also including both genotype and environmental condition data). When used with four different combinations of genotypes and environmental data, EXGEP exceeded the yield prediction performance of the classic model Bayesian ridge regression model by 17.37%-42.35%. Moreover, EXGEP incorporates SHapley Additive exPlanations values that can uncover complex nonlinear relationships between genotype and environment and identify key features, and their interactions, that provide the main contributions to model performance, thus enhancing our understanding of genotype-by-environment interactions. Additionally, data from a series of tests support that EXGEP exhibits superior performance in terms of prediction accuracy and explainability. Our development of EXGEP and comparisons of it against alternative models provides valuable insights into methods for accurately predicting complex traits in multiple environments.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Phenotypic variation results from the combination of genotype, the environment, and their interaction. The ability to quantify the relative contributions of genetic and environmental factors to complex traits can help in breeding crops with superior adaptability for growth in varied environments. Here, we developed and extensively evaluated the performance of an explainable machine-learning framework named explainable genotype-by-environment interactions prediction (EXGEP) to accurately predict the grain yield in crops. To assess the performance of EXGEP, we applied it to a dataset comprising 70 693 phenotypic records of grain yield traits for 3793 hybrids (also including both genotype and environmental condition data). When used with four different combinations of genotypes and environmental data, EXGEP exceeded the yield prediction performance of the classic model Bayesian ridge regression model by 17.37%-42.35%. Moreover, EXGEP incorporates SHapley Additive exPlanations values that can uncover complex nonlinear relationships between genotype and environment and identify key features, and their interactions, that provide the main contributions to model performance, thus enhancing our understanding of genotype-by-environment interactions. Additionally, data from a series of tests support that EXGEP exhibits superior performance in terms of prediction accuracy and explainability. Our development of EXGEP and comparisons of it against alternative models provides valuable insights into methods for accurately predicting complex traits in multiple environments.

Text in English

Tingxi Yu : Not in IRS staff list but CIMMYT Affiliation

Hao Zhang : Not in IRS staff list but CIMMYT Affiliation

Shoukun Chen : Not in IRS staff list but CIMMYT Affiliation

Shang Gao : Not in IRS staff list but CIMMYT Affiliation

Ze Liu : Not in IRS staff list but CIMMYT Affiliation

National Natural Science Foundation of China Chinese Academy of Agricultural Sciences (CAAS) Bill & Melinda Gates Foundation (BMGF) Breeding for Tomorrow Genebanks

https://hdl.handle.net/10568/179238

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org