Knowledge Center Catalog

Local cover image
Local cover image

Optimizing genomic diversity assessments for conservation of Bromus auleticus (Trinius ex Nees) using individual and pooled sequencing

By: Contributor(s): Material type: ArticleLanguage: English Publication details: San Francisco, CA (United States of America) : Public Library of Science, 2025.ISSN:
  • 1932-6203 (Online)
Subject(s): Online resources: In: PLOS One San Francisco, CA (United States of America) : Public Library of Science, 2025. v. 20, no. 6, art. e0325548Summary: Bromus auleticus, a valuable forage grass native to the Pampa biome, is currently undergoing genetic erosion. Therefore, it is essential to assess appropriate methodologies for developing population genomic studies that will contribute to the conservation of this genetic resource. In this study, we evaluated five accessions using two genotyping strategies: individual sequencing (ind-seq) and pooled sequencing (pool-seq). To assess methodologies effectiveness, the correlation between allele frequencies calculated using each approach was investigated, as well as genetic diversity and population structure. These comparisons explicitly accounted for the potential effects of factors such as sample size, missing data, sequencing depth, and minor allele frequencies. The highest values of frequencies concordance and percentage of SNPs in common between ind-seq and pool-seq were achieved using a sample size of 30-60 plants per accession. These values were obtained with a maximum missing data threshold of 10% and a less strict minimum allele frequency threshold for pool-seq (0.01) compared to ind-seq (0.05). Pool-seq required a higher sequencing depth per accession (4.8 million reads) compared to ind-seq (0.9 million reads) to achieve similar allele frequencies. Pools of 50 individuals yielded the highest number of polymorphic sites, averaging over 9,000 per accession at a sequencing depth of 4.8 Mr. Under these conditions, pool-seq consistently resulted in an average of 0.09 higher expected heterozygosity and a 0.24 lower allelic richness compared to ind-seq in all accessions. Population structure inferred with both methodologies confirmed the outcrossing nature of B. auleticus and aligned with the geographical origin of each accession. The average inbreeding coefficient of 0.2 evidence inbreeding, which highlights the importance of conservation efforts for this valuable plant genetic resource. Based on these findings, we propose two workflows for conducting population genomics studies on Bromus auleticus.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Bromus auleticus, a valuable forage grass native to the Pampa biome, is currently undergoing genetic erosion. Therefore, it is essential to assess appropriate methodologies for developing population genomic studies that will contribute to the conservation of this genetic resource. In this study, we evaluated five accessions using two genotyping strategies: individual sequencing (ind-seq) and pooled sequencing (pool-seq). To assess methodologies effectiveness, the correlation between allele frequencies calculated using each approach was investigated, as well as genetic diversity and population structure. These comparisons explicitly accounted for the potential effects of factors such as sample size, missing data, sequencing depth, and minor allele frequencies. The highest values of frequencies concordance and percentage of SNPs in common between ind-seq and pool-seq were achieved using a sample size of 30-60 plants per accession. These values were obtained with a maximum missing data threshold of 10% and a less strict minimum allele frequency threshold for pool-seq (0.01) compared to ind-seq (0.05). Pool-seq required a higher sequencing depth per accession (4.8 million reads) compared to ind-seq (0.9 million reads) to achieve similar allele frequencies. Pools of 50 individuals yielded the highest number of polymorphic sites, averaging over 9,000 per accession at a sequencing depth of 4.8 Mr. Under these conditions, pool-seq consistently resulted in an average of 0.09 higher expected heterozygosity and a 0.24 lower allelic richness compared to ind-seq in all accessions. Population structure inferred with both methodologies confirmed the outcrossing nature of B. auleticus and aligned with the geographical origin of each accession. The average inbreeding coefficient of 0.2 evidence inbreeding, which highlights the importance of conservation efforts for this valuable plant genetic resource. Based on these findings, we propose two workflows for conducting population genomics studies on Bromus auleticus.

Text in English

Agencia Nacional de Investigación e Innovación (ANII) Instituto Nacional de Investigación Agropecuaria (INIA) Centro Universitario Regional del Este (CURE)

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org