Knowledge Center Catalog

Local cover image
Local cover image

SPDC-HG : an accelerator of genomic hybrid breeding in maize

By: Contributor(s): Material type: ArticleLanguage: English Publication details: United Kingdom : John Wiley & Sons, 2025.ISSN:
  • 1467-7644
  • 1467-7652 (Online)
Subject(s): Online resources: In: Plant Biotechnology Journal United Kingdom : John Wiley & Sons, 2025. v. 23, no. 5, p. 1847-1861Summary: Integrating multiple modern breeding techniques in maize has always been challenging. This study aimed to address this issue by applying a flexible sparse partial diallel cross design composed of 945 maize hybrids derived from 266 inbred lines across different heterotic groups. The research integrated genome-wide association studies, genomic selection and genomic evaluation of parental inbred lines to accelerate the breeding process for developing single-cross hybrids. Significant associations were identified for 7-25 stable single nucleotide polymorphisms (SNPs) associated with the general combining abilities (GCAs) of nine yield-related traits. Using the maizeGDB and NCBI databases, 264 candidate genes were screened and functionally annotated based on significant SNPs detected by at least three statistical methods. The marker set developed from these GCA SNPs significantly improved the prediction accuracy of hybrids across all traits. The GCA estimates of the inbred lines involved in the top 100 and bottom 100 hybrids consistently ranked at the top and bottom, thereby confirming the accuracy of the predictions. Furthermore, the top 100 crosses selected using BayesB, GBLUP and LASSO showed a 105.4-108.6% increase in average ear weight compared to the bottom 100 crosses in field validation, demonstrating strong selection gains. Notably, amongst the top 100 hybrids, A017/A037 and A037/A169, each containing six superior genotypes were registered as Suyu 161 and Tongyu 1701, respectively, by the National Crop Variety Approval Committee in China. These results highlight the effectiveness of genomic selection and provide valuable insights for advancing genomic hybrid breeding in maize.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open access

Integrating multiple modern breeding techniques in maize has always been challenging. This study aimed to address this issue by applying a flexible sparse partial diallel cross design composed of 945 maize hybrids derived from 266 inbred lines across different heterotic groups. The research integrated genome-wide association studies, genomic selection and genomic evaluation of parental inbred lines to accelerate the breeding process for developing single-cross hybrids. Significant associations were identified for 7-25 stable single nucleotide polymorphisms (SNPs) associated with the general combining abilities (GCAs) of nine yield-related traits. Using the maizeGDB and NCBI databases, 264 candidate genes were screened and functionally annotated based on significant SNPs detected by at least three statistical methods. The marker set developed from these GCA SNPs significantly improved the prediction accuracy of hybrids across all traits. The GCA estimates of the inbred lines involved in the top 100 and bottom 100 hybrids consistently ranked at the top and bottom, thereby confirming the accuracy of the predictions. Furthermore, the top 100 crosses selected using BayesB, GBLUP and LASSO showed a 105.4-108.6% increase in average ear weight compared to the bottom 100 crosses in field validation, demonstrating strong selection gains. Notably, amongst the top 100 hybrids, A017/A037 and A037/A169, each containing six superior genotypes were registered as Suyu 161 and Tongyu 1701, respectively, by the National Crop Variety Approval Committee in China. These results highlight the effectiveness of genomic selection and provide valuable insights for advancing genomic hybrid breeding in maize.

Text in English

National Key Research and Development Program Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) National Natural Science Foundation of China Breeding for Tomorrow

https://hdl.handle.net/10568/179270

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org