Knowledge Center Catalog

Local cover image
Local cover image

Modelling groundwater futures under climatic uncertainty for local policy and planning : a case of quantification of groundwater resources at sub-regional level in the Ganges basin

By: Contributor(s): Material type: ArticleLanguage: English Publication details: Netherlands : Elsevier, 2025.ISSN:
  • 2214-5818 (Online)
Subject(s): Online resources: In: Journal of Hydrology: Regional Studies Netherlands : Elsevier, 2025. v. 59, art. 102315Summary: Study region: Nalanda district, Bihar, India, a sub-tropical region, and part of middle Ganga River basin. Study focus: Assessing the impacts of climate change on aquifers' seasonal replenishment is thus crucial for planning for future local food and water security. This study looks at how future groundwater levels will be affected by climate change in relation to important functioning thresholds that are typical for aquifers that replenish periodically. New hydrological insights for the region The result shows the projected groundwater levels from 2018 to 2060 using the CMIP6 global climate model, using rainfall data from three GCMs selected based on their different projected scenarios of levels of high intensity rainfall. Given the key role of low intensity rainfall in groundwater recharge, we find that incorporating rainfall intensity in groundwater models can be crucial for more robust projections. Our findings also show that higher total rainfall does not necessarily equate to higher groundwater recharge or lesser groundwater declines. Instead, the least groundwater declines were found in projections, where relatively higher total rainfall was also associated with lower high intensity rainfall periods, highlighting the need for combining and comparing varied SSPs and climate models for accurate future trends. At the sub-regional level, we find that climate change could lead to maximum groundwater loss of ∼ 0.8 km3 in 42 years in Nalanda district. Current trend analysis (2000–2018) already shows a negative annual groundwater balance. Even assuming no changes to current groundwater extraction rates, climate change will result in decreased groundwater levels and storage. The projection trends also reveal distinct short-term, medium-term, and long-term shifts which offer different policy windows for managing and governing the groundwater resources.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Study region: Nalanda district, Bihar, India, a sub-tropical region, and part of middle Ganga River basin. Study focus: Assessing the impacts of climate change on aquifers' seasonal replenishment is thus crucial for planning for future local food and water security. This study looks at how future groundwater levels will be affected by climate change in relation to important functioning thresholds that are typical for aquifers that replenish periodically. New hydrological insights for the region The result shows the projected groundwater levels from 2018 to 2060 using the CMIP6 global climate model, using rainfall data from three GCMs selected based on their different projected scenarios of levels of high intensity rainfall. Given the key role of low intensity rainfall in groundwater recharge, we find that incorporating rainfall intensity in groundwater models can be crucial for more robust projections. Our findings also show that higher total rainfall does not necessarily equate to higher groundwater recharge or lesser groundwater declines. Instead, the least groundwater declines were found in projections, where relatively higher total rainfall was also associated with lower high intensity rainfall periods, highlighting the need for combining and comparing varied SSPs and climate models for accurate future trends. At the sub-regional level, we find that climate change could lead to maximum groundwater loss of ∼ 0.8 km3 in 42 years in Nalanda district. Current trend analysis (2000–2018) already shows a negative annual groundwater balance. Even assuming no changes to current groundwater extraction rates, climate change will result in decreased groundwater levels and storage. The projection trends also reveal distinct short-term, medium-term, and long-term shifts which offer different policy windows for managing and governing the groundwater resources.

Text in English

Transforming Agrifood Systems in South Asia CGIAR Trust Fund Nutrition, health & food security Climate adaptation & mitigation Resilient Agrifood Systems

https://hdl.handle.net/10568/170015

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org