Knowledge Center Catalog

Local cover image
Local cover image

Effect of F1 and F2 generations on genetic variability and working steps of doubled haploid production in maize

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Public Library of Science, 2019. San Francisco, CA (USA) :ISSN:
  • 1932-6203 (Online)
Subject(s): Online resources: In: PLoS ONE v. 14, no. 11, e0224631Summary: For doubled haploid (DH) production in maize, F1 generation has been the most frequently used for haploid induction due to facility in the process. However, using F2 generation would be a good alternative to increase genetic variability owing to the additional recombination in meiosis. Our goals were to compare the effect of F1 and F2 generations on DH production in tropical germplasm, evaluating the R1-navajo expression in seeds, the working steps of the methodology, and the genetic variability of the DH lines obtained. Sources germplasm in F1 and F2 generations were crossed with the tropicalized haploid inducer LI-ESALQ. After harvest, for both induction crosses were calculated the haploid induction rate (HIR), diploid seed rate (DSR), and inhibition seed rate (ISR) using the total number of seeds obtained. In order to study the effectiveness of the DH working steps in each generation, the percentage per se and the relative percentage were verified. In addition, SNP markers were obtained for genetic variability studies. Results showed that the values for HIR, ISR, and DSR were 1.23%, 23.48%, and 75.21% for F1 and 1.78%, 15.82%, and 82.38% for F2, respectively. The effectiveness of the DH working step showed the same percentage per se value (0.4%) for F1 and F2, while the relative percentage was 27.2% for F1 and 22.4% for F2. Estimates of population parameters in DH lines from F1 were higher than F2. Furthermore, population structure and kinship analyses showed that one additional generation was not sufficient to create new genotype subgroups. Additionally, the relative efficiency of the response to selection in the F1 was 31.88% higher than F2 due to the number of cycles that are used to obtain the DH. Our results showed that in tropical maize, the use of F1 generation is recommended due to a superior balance between time and genetic variability.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

For doubled haploid (DH) production in maize, F1 generation has been the most frequently used for haploid induction due to facility in the process. However, using F2 generation would be a good alternative to increase genetic variability owing to the additional recombination in meiosis. Our goals were to compare the effect of F1 and F2 generations on DH production in tropical germplasm, evaluating the R1-navajo expression in seeds, the working steps of the methodology, and the genetic variability of the DH lines obtained. Sources germplasm in F1 and F2 generations were crossed with the tropicalized haploid inducer LI-ESALQ. After harvest, for both induction crosses were calculated the haploid induction rate (HIR), diploid seed rate (DSR), and inhibition seed rate (ISR) using the total number of seeds obtained. In order to study the effectiveness of the DH working steps in each generation, the percentage per se and the relative percentage were verified. In addition, SNP markers were obtained for genetic variability studies. Results showed that the values for HIR, ISR, and DSR were 1.23%, 23.48%, and 75.21% for F1 and 1.78%, 15.82%, and 82.38% for F2, respectively. The effectiveness of the DH working step showed the same percentage per se value (0.4%) for F1 and F2, while the relative percentage was 27.2% for F1 and 22.4% for F2. Estimates of population parameters in DH lines from F1 were higher than F2. Furthermore, population structure and kinship analyses showed that one additional generation was not sufficient to create new genotype subgroups. Additionally, the relative efficiency of the response to selection in the F1 was 31.88% higher than F2 due to the number of cycles that are used to obtain the DH. Our results showed that in tropical maize, the use of F1 generation is recommended due to a superior balance between time and genetic variability.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org