Knowledge Center Catalog

Local cover image
Local cover image

Genomewide selection for rapid introgression of exotic germplasm in maize

By: Material type: ArticleArticleLanguage: English Publication details: Madison (USA) : CSSA : Wiley, 2009.ISSN:
  • 0011-183X
  • 1435-0653 (Online)
Subject(s): In: Crop Science v. 49, no. 2, p. 419-425Summary: The length of time needed for prebreeding in adapted × exotic maize (Zea mays L.) crosses has deterred breeders from exploiting exotic germplasm. My objective in this study was to determine, by simulation, the usefulness of genomewide selection for the rapid improvement of an adapted × exotic cross. I simulated F2, BC1, and BC2 populations from an adapted × exotic maize cross. The adapted inbred had the favorable allele at LAdapted = 50 quantitative trait loci (QTL), whereas the exotic inbred had the favorable allele at LExotic = 50, 25, 10, or 5 QTL. The joint effects of 512 markers were fitted by best linear unbiased prediction. For LExotic ≤ 25, the maximum responses (in units of the testcross genetic standard deviation) to multiple cycles of genomewide selection ranged from 0.38 to 3.81. Responses increased as heritability increased and as the number of testcrosses that were phenotyped in Cycle 0 increased from 144 to 288. Overall, the results indicated that a useful strategy for the rapid improvement of an adapted × exotic cross involves 7 to 8 cycles of genomewide selection starting in the F2 rather than in a backcross population, even when the number of favorable alleles is substantially larger in the adapted parent than in the exotic parent. Assuming three generations can be grown per year in a greenhouse or year‐round nursery, this procedure would require only 3 yr beyond the time required to develop and phenotype the Cycle 0 testcrosses.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer review

The length of time needed for prebreeding in adapted × exotic maize (Zea mays L.) crosses has deterred breeders from exploiting exotic germplasm. My objective in this study was to determine, by simulation, the usefulness of genomewide selection for the rapid improvement of an adapted × exotic cross. I simulated F2, BC1, and BC2 populations from an adapted × exotic maize cross. The adapted inbred had the favorable allele at LAdapted = 50 quantitative trait loci (QTL), whereas the exotic inbred had the favorable allele at LExotic = 50, 25, 10, or 5 QTL. The joint effects of 512 markers were fitted by best linear unbiased prediction. For LExotic ≤ 25, the maximum responses (in units of the testcross genetic standard deviation) to multiple cycles of genomewide selection ranged from 0.38 to 3.81. Responses increased as heritability increased and as the number of testcrosses that were phenotyped in Cycle 0 increased from 144 to 288. Overall, the results indicated that a useful strategy for the rapid improvement of an adapted × exotic cross involves 7 to 8 cycles of genomewide selection starting in the F2 rather than in a backcross population, even when the number of favorable alleles is substantially larger in the adapted parent than in the exotic parent. Assuming three generations can be grown per year in a greenhouse or year‐round nursery, this procedure would require only 3 yr beyond the time required to develop and phenotype the Cycle 0 testcrosses.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org