Chapter 1. Wild relatives of maize
Material type: ArticleLanguage: English Publication details: Cham (Switzerland) : Springer, 2019.ISBN:- 978-3-319-97120-9
- 978-3-319-97121-6 (Online)
Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Book part | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | Available |
Crop domestication changed the course of human evolution, and domestication of maize (Zea mays L. subspecies mays), today the world’s most important crop, enabled civilizations to flourish and has played a major role in shaping the world we know today. Archaeological and ethnobotanical research help us understand the development of the cultures and the movements of the peoples who carried maize to new areas where it continued to adapt. Ancient remains of maize cobs and kernels have been found in the place of domestication, the Balsas River Valley (~9,000 years before present era), and the cultivation center, the Tehuacan Valley (~5,000 years before present era), and have been used to study the process of domestication. Paleogenomic data showed that some of the genes controlling the stem and inflorescence architecture were comparable to modern maize, while other genes controlling ear shattering and starch biosynthesis retain high levels of variability, similar to those found in the wild relative teosinte. These results indicate that the domestication process was both gradual and complex, where different genetic loci were selected at different points in time, and that the transformation of teosinte to maize was completed in the last 5,000 years. Mesoamerican native cultures domesticated teosinte and developed maize from a 6 cm long, popping-kernel ear to what we now recognize as modern maize with its wide variety in ear size, kernel texture, color, size, and adequacy for diverse uses and also invented nixtamalization, a process key to maximizing its nutrition.
Used directly for human and animal consumption, processed food products, bioenergy, and many cultural applications, it is now grown on six of the world’s seven continents. The study of its evolution and domestication from the wild grass teosinte helps us understand the nature of genetic diversity of maize and its wild relatives and gene expression. Genetic barriers to direct use of teosinte or Tripsacum in maize breeding have challenged our ability to identify valuable genes and traits, let alone incorporate them into elite, modern varieties. Genomic information and newer genetic technologies will facilitate the use of wild relatives in crop improvement; hence it is more important than ever to ensure their conservation and availability, fundamental to future food security. In situ conservation efforts dedicated to preserving remnant populations of wild relatives in Mexico are key to safeguarding the genetic diversity of maize and its genepool, as well as enabling these species to continue to adapt to dynamic climate and environmental changes. Genebank ex situ efforts are crucial to securely maintain collected wild relative resources and to provide them for gene discovery and other research efforts.
GENE BANK
Text in English