Knowledge Center Catalog

Local cover image
Local cover image

Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Switzerland : Frontiers, 2019.ISSN:
  • 1664-462X
Subject(s): Online resources: In: Plant Breeding v. 9, art. 1919Summary: Drought stress is recognized as a major constraint to maize yield production, the heat stress alone and in combination with drought stress are likely to become the increasing constraints. The association mapping and genomic prediction analyses were conducted in a collection of 300 tropical and subtropical maize inbred lines to reveal the genetic architecture of grain yield and flowering time under well-watered, drought stress, heat stress, and combined drought and heat stress conditions. Out of the 381,165 genotyping-by-sequencing SNPs, 1661 were significantly associated with all the 12 trait-environment combinations, the average PVE (phenotypic variation explained) value of theses associations was 4.33%, and 586 of them had a PVE value greater than 5%. These associations were clustered into 446 genomic regions with a window size of 20 Mb per region, and 671 candidate genes containing the significantly associated SNPs were identified. In addition, 33 hotspots were identified for 12 trait-condition combinations and most were located on chromosomes 1 and 8. Compared with single SNP-based association mapping, the haplotype-based associated mapping detected less number of significant associations and candidate genes with higher PVE values. All the candidate genes were enriched into 15 gene ontology terms, and 46 candidate genes showed significant differential expression under the well-watered and drought stress conditions. Association mapping results identified few overlapped significant associations and candidate genes for the same traits evaluated under different conditions, indicating the genetic divergence between the individual stress tolerance and the combined drought and heat stress tolerance. The genomic prediction accuracies obtained from the marker-trait associated SNPs were relatively higher than those obtained from the genome-wide SNPs for most of the target traits. The genetic architecture information of the grain yield and flowering time revealed in this study, and the genomic regions identified for the different trait-environment combinations are helpful accelerating the efforts on rapid development of the stress-tolerant maize germplasm through marker-assisted selection or genomic selection.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Drought stress is recognized as a major constraint to maize yield production, the heat stress alone and in combination with drought stress are likely to become the increasing constraints. The association mapping and genomic prediction analyses were conducted in a collection of 300 tropical and subtropical maize inbred lines to reveal the genetic architecture of grain yield and flowering time under well-watered, drought stress, heat stress, and combined drought and heat stress conditions. Out of the 381,165 genotyping-by-sequencing SNPs, 1661 were significantly associated with all the 12 trait-environment combinations, the average PVE (phenotypic variation explained) value of theses associations was 4.33%, and 586 of them had a PVE value greater than 5%. These associations were clustered into 446 genomic regions with a window size of 20 Mb per region, and 671 candidate genes containing the significantly associated SNPs were identified. In addition, 33 hotspots were identified for 12 trait-condition combinations and most were located on chromosomes 1 and 8. Compared with single SNP-based association mapping, the haplotype-based associated mapping detected less number of significant associations and candidate genes with higher PVE values. All the candidate genes were enriched into 15 gene ontology terms, and 46 candidate genes showed significant differential expression under the well-watered and drought stress conditions. Association mapping results identified few overlapped significant associations and candidate genes for the same traits evaluated under different conditions, indicating the genetic divergence between the individual stress tolerance and the combined drought and heat stress tolerance. The genomic prediction accuracies obtained from the marker-trait associated SNPs were relatively higher than those obtained from the genome-wide SNPs for most of the target traits. The genetic architecture information of the grain yield and flowering time revealed in this study, and the genomic regions identified for the different trait-environment combinations are helpful accelerating the efforts on rapid development of the stress-tolerant maize germplasm through marker-assisted selection or genomic selection.

Maize CRP FP2 - Novel tools, technologies and traits for improving genetic gains and breeding efficiency FP3 - Stress resilient and nutritious maize

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org