Knowledge Center Catalog

Local cover image
Local cover image

Breeding for provitamin A biofortification of maize (Zea mays L.)

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Berlin, Germany : Blackwell Verlag GmbH, 2018. Subject(s): Online resources: In: Plant Breeding v. 137, no. 4, p. 451-469Summary: Vitamin A deficiency is widely prevailing in children and women of developing countries. Deficiency of vitamin A causes night blindness, growth retardation, xerophthalmia and increases the susceptibility against epidemic diseases. Among different interventions of overcoming malnutrition, biofortification is the most acceptable and preferred intervention among researchers, growers and consumers. Maize is grown and consumed in those regions where vitamin A deficiency is most prevalent; thus, targeting this crop for provitamin A biofortification is the most appropriate solution. Different breeding strategies including diversity analysis, introduction and stability analysis of exotic germplasm, hybridization, heterosis breeding, mutagenesis and marker-assisted selection are practised for exploring maize germplasm and development of provitamin A-enriched cultivars. Genome-wide association selection and development of transgenic maize genotypes are also being practised, whereas RNA interference and genome editing tools could also be used as potential strategies for provitamin A biofortification of maize genotypes. The use of these breeding strategies for provitamin A biofortification of maize is comprehensively reviewed to provide a working outline for maize breeders.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Free Access

Vitamin A deficiency is widely prevailing in children and women of developing countries. Deficiency of vitamin A causes night blindness, growth retardation, xerophthalmia and increases the susceptibility against epidemic diseases. Among different interventions of overcoming malnutrition, biofortification is the most acceptable and preferred intervention among researchers, growers and consumers. Maize is grown and consumed in those regions where vitamin A deficiency is most prevalent; thus, targeting this crop for provitamin A biofortification is the most appropriate solution. Different breeding strategies including diversity analysis, introduction and stability analysis of exotic germplasm, hybridization, heterosis breeding, mutagenesis and marker-assisted selection are practised for exploring maize germplasm and development of provitamin A-enriched cultivars. Genome-wide association selection and development of transgenic maize genotypes are also being practised, whereas RNA interference and genome editing tools could also be used as potential strategies for provitamin A biofortification of maize genotypes. The use of these breeding strategies for provitamin A biofortification of maize is comprehensively reviewed to provide a working outline for maize breeders.

Text in English

Maqbool, M.A. : Not in IRS staff list but CIMMYT Affiliation CIMMYT Informa : 2021 (Octubre 15, 2018)

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org