Knowledge Center Catalog

Local cover image
Local cover image

Use of remote sensing technology in the assessment of resistance of maize to tar spot complex

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: United Kingdom : Cambridge University Press, 2017.Subject(s): Online resources: In: Advances in Animal Biosciences v. 8, no. 2, p. 259-263Summary: Assessment of Tar Spot Complex (TSC) severity in maize breeding experiments is conducted visually and may sometimes result in inconsistencies due to human interpretation. Disease scoring using remote sensing technologies may help bring more precision to the phenotyping process. An experiment for assessment of grain yield losses due to TSC was conducted at the Aguafria Experimental Station of the International Center for Wheat and Maize Improvement – CIMMYT in Mexico. Twenty-five maize genotypes were planted in spring of 2016 under a fungicide treatment to control TSC development and no fungicide treatment in a square lattice design with three replications. Four flights were carried out using an Unmanned Aerial Vehicle (UAV) equipped with a multispectral (550, 660, 735, 790 nm) and a thermal camera, simultaneously with the visual disease scorings and the yield was measured after harvesting. The preliminary results of the study indicated that the use of remote sensing in disease resistance phenotyping may be as effective as visual disease scoring since both correlate highly with the grain yield. Structural and chlorophyll vegetation indices (VIs) proved to be a good alternative for the estimation of yield losses caused by TSC in experimental field conditions, which may be potentially used for screening for resistance to this disease in maize genotypes, hypothetically reducing the need for visual disease scoring in the field.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Paper presented at the 11th European Conference on Precision Agriculture (ECPA 2017), John McIntyre Centre, Edinburgh, UK, July 16–20 2017

Assessment of Tar Spot Complex (TSC) severity in maize breeding experiments is conducted visually and may sometimes result in inconsistencies due to human interpretation. Disease scoring using remote sensing technologies may help bring more precision to the phenotyping process. An experiment for assessment of grain yield losses due to TSC was conducted at the Aguafria Experimental Station of the International Center for Wheat and Maize Improvement – CIMMYT in Mexico. Twenty-five maize genotypes were planted in spring of 2016 under a fungicide treatment to control TSC development and no fungicide treatment in a square lattice design with three replications. Four flights were carried out using an Unmanned Aerial Vehicle (UAV) equipped with a multispectral (550, 660, 735, 790 nm) and a thermal camera, simultaneously with the visual disease scorings and the yield was measured after harvesting. The preliminary results of the study indicated that the use of remote sensing in disease resistance phenotyping may be as effective as visual disease scoring since both correlate highly with the grain yield. Structural and chlorophyll vegetation indices (VIs) proved to be a good alternative for the estimation of yield losses caused by TSC in experimental field conditions, which may be potentially used for screening for resistance to this disease in maize genotypes, hypothetically reducing the need for visual disease scoring in the field.

Maize CRP

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org