Knowledge Center Catalog

Local cover image
Local cover image

Analysis of maize production in Honduras : linking census data to environment variables through geographic information systems

By: Contributor(s): Material type: TextTextLanguage: English Series: CIMMYT NRG-GIS Series ; 99-02Publication details: Mexico : CIMMYT, 1999.Description: 27 pagesSubject(s): Online resources: Summary: Because data from traditional censuses are not spatially referenced, biophysical information is generally the only type used to define the spatial domains for targeting technologies. Using existing census data for Honduras aggregated at the municipality and village levels (291 municipalities and 3,728 villages), agricultural census data were linked to spatial data for altitude, precipitation, and market access. Village-level census data were stratified by altitude (<1,000, 1,000-1,200, 1,200-1500,>1,500 m) and farm size (<5,5-20, 20-100, 100-500 and > 500 ha.). This study characterizes four principal maize production systems in a spatial and temporal context: 1) summer season maize under monoculture; 2) summer season maize under intercropping; 3) winter season maize under monoculture; and 4) winter season maize under intercropping. By far the most important and widespread maize production system is summer monocropped maize, accounting for two-thirds of national maize harvested area and about 75% of maize production. Summer intercropped maize and winter monocropped maize are more geographically concentrated. Differences in maize productivity (as measured by grain yield) were observed as a function of cropping season, system, altitude class, and farm size. Average yields for the <1,000, 1,000-1,200, 1,200-1500 and > 1,500 altitude classes were 1.47, 1.07, 1.01, and 1.13 t/ha, respectively. In the summer season monoculture systems, a positive relationship between yield and farm size was found. Maize yields in the intercropped systems were low (0.5-1.0 t/ha) and were less related to farm size. Most maize area was planted at elevations below 1,000 m on farms of less than 20 ha (57%). This was followed by farms in the 20-100 ha range at altitudes under 1,000 m (14%) and farms in the 100-500 ha range under 1,000 m (7%). The portions of maize production sold to market for the <1,000 1,000-1,200, 1,200-1,500 and > 1,500 altitude classes were 40.5, 11,9, 9.4 and 16.1% linking different types of spatial data (biophysical and socio-economic) can increase the usefulness of available country-wide census data in developing countries.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Notes Date due Barcode Item holds
Book CIMMYT Knowledge Center: John Woolston Library CIMMYT Publications Collection CIMMYT NRG-GIS / No. 99-02. (Browse shelf(Opens below)) 1 Available Look under series title 628975
Book CIMMYT Knowledge Center: John Woolston Library CIMMYT Publications Collection CIMMYT NRG-GIS / No. 99-02. (Browse shelf(Opens below)) 2 Available Look under series title 640017
Total holds: 0

Open Access

Because data from traditional censuses are not spatially referenced, biophysical information is generally the only type used to define the spatial domains for targeting technologies. Using existing census data for Honduras aggregated at the municipality and village levels (291 municipalities and 3,728 villages), agricultural census data were linked to spatial data for altitude, precipitation, and market access. Village-level census data were stratified by altitude (<1,000, 1,000-1,200, 1,200-1500,>1,500 m) and farm size (<5,5-20, 20-100, 100-500 and > 500 ha.). This study characterizes four principal maize production systems in a spatial and temporal context: 1) summer season maize under monoculture; 2) summer season maize under intercropping; 3) winter season maize under monoculture; and 4) winter season maize under intercropping. By far the most important and widespread maize production system is summer monocropped maize, accounting for two-thirds of national maize harvested area and about 75% of maize production. Summer intercropped maize and winter monocropped maize are more geographically concentrated. Differences in maize productivity (as measured by grain yield) were observed as a function of cropping season, system, altitude class, and farm size. Average yields for the <1,000, 1,000-1,200, 1,200-1500 and > 1,500 altitude classes were 1.47, 1.07, 1.01, and 1.13 t/ha, respectively. In the summer season monoculture systems, a positive relationship between yield and farm size was found. Maize yields in the intercropped systems were low (0.5-1.0 t/ha) and were less related to farm size. Most maize area was planted at elevations below 1,000 m on farms of less than 20 ha (57%). This was followed by farms in the 20-100 ha range at altitudes under 1,000 m (14%) and farms in the 100-500 ha range under 1,000 m (7%). The portions of maize production sold to market for the <1,000 1,000-1,200, 1,200-1,500 and > 1,500 altitude classes were 40.5, 11,9, 9.4 and 16.1% linking different types of spatial data (biophysical and socio-economic) can increase the usefulness of available country-wide census data in developing countries.

Text in English

LSLinks|9912|AGRIS 0001|R99-00CIMPU|EE|DSpace 1

CIMMYT Publications Collection

5979.jpg

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org