Knowledge Center Catalog

Local cover image
Local cover image

Increasing crop-water productivity through genetic improvement for tolerance to water stresses in maize (Zea mays L.)

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Gosford (Australia) : The Regional Institute, 2004.ISBN:
  • 1 920842 20 9
Subject(s): In: New directions for a diverse planet: Proceedings of the 4th International Crop Science CongressSummary: Inadequate water is a major cause of crop yield losses particularly in the tropics. Uncertainties in weather due to global warming are expected to increase the occurrence of inadequate water availability. At CIMMYT, various approaches to improved drought tolerance in maize have been explored. About three decades of work on drought tolerance in maize has resulted in improved source populations and open-pollinated and hybrid products that perform well under drought stress. Results from recent studies show the usefulness of this germplasm under severe drought stress conditions. Furthermore, the improvement for mid-season drought tolerance appears to impart tolerance to various other stresses, such as low-N fertility. Under ICAR-CIMMYT collaborative program, a large amount of maize germplasm, including inbred lines from CIMMYT and the national program, were screened for excess moisture/waterlogging tolerance in India. Many promising tolerant lines were identified and further improved for developing excess moisture tolerant cultivars for waterlogging prone areas in India. The secondary traits such as anthesissilking-interval (ASI), early and increased brace root development and high root porosity have been identified the traits associated with excess moisture tolerance in maize. Due to fairly high expression of the stress-adaptive traits under managed drought or excessive moisture stress conditions, they can be carefully selected and further improved. Since the maize is frequently exposed to both the extremes of water availability in many monsoonal areas in Asia, our major focus is to develop robust germplasm with improved performance across the regimes of water availability.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Inadequate water is a major cause of crop yield losses particularly in the tropics. Uncertainties in weather due to global warming are expected to increase the occurrence of inadequate water availability. At CIMMYT, various approaches to improved drought tolerance in maize have been explored. About three decades of work on drought tolerance in maize has resulted in improved source populations and open-pollinated and hybrid products that perform well under drought stress. Results from recent studies show the usefulness of this germplasm under severe drought stress conditions. Furthermore, the improvement for mid-season drought tolerance appears to impart tolerance to various other stresses, such as low-N fertility. Under ICAR-CIMMYT collaborative program, a large amount of maize germplasm, including inbred lines from CIMMYT and the national program, were screened for excess moisture/waterlogging tolerance in India. Many promising tolerant lines were identified and further improved for developing excess moisture tolerant cultivars for waterlogging prone areas in India. The secondary traits such as anthesissilking-interval (ASI), early and increased brace root development and high root porosity have been identified the traits associated with excess moisture tolerance in maize. Due to fairly high expression of the stress-adaptive traits under managed drought or excessive moisture stress conditions, they can be carefully selected and further improved. Since the maize is frequently exposed to both the extremes of water availability in many monsoonal areas in Asia, our major focus is to develop robust germplasm with improved performance across the regimes of water availability.

Global Maize Program

Text in English

0503|AL-Maize Program

INT2823

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org