Kernel number as a positive target trait for prediction of hybrid performance under low-nitrogen stress as revealed by diallel analysis under contrasting nitrogen conditions
Material type: ArticleLanguage: En Publication details: Tokyo (Japan) : Japanese Society of Breeding, 2014.ISSN:- 1344-7610
- 1347-3735 (Online)
Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Article | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | Available |
Peer review
Peer-review: Yes - Open Access: Yes | http://ip-science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=1344-7610
Environmental sustainability concerns make improving yield under lower N input a desirable breeding goal. To evaluate genetic variation and heterosis for low-N tolerance breeding, 28 F1 hybrids from a diallel scheme, along with their eight parental lines, were tested for agronomic traits including kernel number per ear (KNE) and grain yield per plant (GY), in replicated plots over two years under low-nitrogen (LN, without nitrogen application) and normal-nitrogen (NN, 220 kg N ha−1) conditions. Taken together the heritability in this and our previous studies, the correlation with grain yield, and the sensitivity to the stress for target trait selection, KNE was a good secondary target trait for LN selection in maize breeding. KNE also showed much higher mid-parent heterosis than hundred-kernel weight under both nitrogen levels, particularly under LN, indicating that KNE contributed the majority of GY heterosis, particularly under LN. Therefore, KNE can be used as a positive target trait for hybrid performance prediction in LN tolerance breeding. Our results also suggest that breeding hybrids for LN tolerance largely relies on phenotypic evaluation of hybrids under LN condition and yield under LN might be improved more by selection for KNE than by direct selection for GY per se.
Global Maize Program
Text in English
CIMMYT Informa 2015
INT2735