Knowledge Center Catalog

Characterization of temperature and light effects on the defense response phenotypes associated with the maize Rp1-D21 autoactive resistance gene

By: Contributor(s): Material type: ArticleArticlePublication details: 2013ISSN:
  • 1471-2229 (Revista en electrónico)
  • No
Subject(s): In: BMC Plant Biology v. 13, no. 106, p. 12 p. Summary: Background: Rp1 is a complex locus of maize, which carries a set of genes controlling race-specific resistance to the common rust fungus, Puccinia sorghi. The resistance response includes the ?Hypersensitive response? (HR), a rapid response triggered by a pathogen recognition event that includes localized cell death at the point of pathogen penetration and the induction of pathogenesis associated genes. The Rp1-D21gene is an autoactive allelic variant at the Rp1 locus, causing spontaneous activation of the HR response, in the absence of pathogenesis. Previously we have shown that the severity of the phenotype conferred by Rp1-D21 is highly dependent on genetic background. Results: In this study we show that the phenotype conferred by Rp1-D21 is highly dependent on temperature, with lower temperatures favoring the expression of the HR lesion phenotype. This temperature effect was observed in all the 14 genetic backgrounds tested. Significant interactions between the temperature effects and genetic background were observed. When plants were grown at temperatures above 30°C, the spontaneous HR phenotype conferred by Rp1-D21 was entirely suppressed. Furthermore, this phenotype could be restored or suppressed by alternately reducing and increasing the temperature appropriately. Light was also required for the expression of this phenotype. By examining the expression of genes associated with the defense response we showed that, at temperatures above 30°C, the Rp1-D21 phenotype was suppressed at both the phenotypic and molecular level. Conclusions: We have shown that the lesion phenotype conferred by maize autoactive resistance gene Rp1-D21 is temperature sensitive in a reversible manner, that the temperature-sensitivity phenotype interacts with genetic background and that the phenotype is light sensitive. This is the first detailed demonstration of this phenomenon in monocots and also the first demonstration of the interaction of this effect with genetic background. The use of temperature shifts to induce a massive and synchronous HR in plants carrying the Rp1-D21 genes will be valuable in identifying components of the defense response pathway.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=1471-2229

Background: Rp1 is a complex locus of maize, which carries a set of genes controlling race-specific resistance to the common rust fungus, Puccinia sorghi. The resistance response includes the ?Hypersensitive response? (HR), a rapid response triggered by a pathogen recognition event that includes localized cell death at the point of pathogen penetration and the induction of pathogenesis associated genes. The Rp1-D21gene is an autoactive allelic variant at the Rp1 locus, causing spontaneous activation of the HR response, in the absence of pathogenesis. Previously we have shown that the severity of the phenotype conferred by Rp1-D21 is highly dependent on genetic background. Results: In this study we show that the phenotype conferred by Rp1-D21 is highly dependent on temperature, with lower temperatures favoring the expression of the HR lesion phenotype. This temperature effect was observed in all the 14 genetic backgrounds tested. Significant interactions between the temperature effects and genetic background were observed. When plants were grown at temperatures above 30°C, the spontaneous HR phenotype conferred by Rp1-D21 was entirely suppressed. Furthermore, this phenotype could be restored or suppressed by alternately reducing and increasing the temperature appropriately. Light was also required for the expression of this phenotype. By examining the expression of genes associated with the defense response we showed that, at temperatures above 30°C, the Rp1-D21 phenotype was suppressed at both the phenotypic and molecular level. Conclusions: We have shown that the lesion phenotype conferred by maize autoactive resistance gene Rp1-D21 is temperature sensitive in a reversible manner, that the temperature-sensitivity phenotype interacts with genetic background and that the phenotype is light sensitive. This is the first detailed demonstration of this phenomenon in monocots and also the first demonstration of the interaction of this effect with genetic background. The use of temperature shifts to induce a massive and synchronous HR in plants carrying the Rp1-D21 genes will be valuable in identifying components of the defense response pathway.

Global Maize Program

English

No CIMMYT affiliation

Lucia Segura

INT3356

Reprints Collection


International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org