Knowledge Center Catalog

Local cover image
Local cover image

Prediction of maize seed attributes using a rapid single kernel near infrared instrument

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: USA : Elsevier, 2009.ISSN:
  • 0733-5210
Subject(s): Online resources: In: Journal of Cereal Science v. 50, no. 3, p. 381-387Summary: Non-destructive measurements of seed attributes would significantly enhance breeder selection of seeds with specific traits, and could potentially improve hybrid development. A single kernel near infrared reflectance (NIR) instrument was developed for rapidly predicting maize grain attributes, which would enable plant breeders to quickly select promising individual seeds. With the overall goal being to develop spectrometric calibrations, absorbance spectra from 904 to 1685 nm were collected from 87 maize samples, with 30 kernels of each sample (2610 kernels total), representing a wide variability in the essential amino acids tryptophan and lysine, crude protein, oil and soluble sugar contents. Average sample spectra were matched to bulk reference values. Partial least squares regression (PLSR) calibration models with cross-validation were developed for both relative (% dry matter) and absolute (mg kernel−1) constituent contents. Similarly, models using bagging PLSR were developed. The best model obtained was for relative crude protein content, with an R2p of 0.75 and a SEP of 0.47%. Kernel mass was also highly predictable (R2p=0.76, SEP=0.03 g). Tryptophan, lysine and oil were less predictable, but showed good potential for segregating individual seeds using NIR. Soluble sugar contents produced poor model statistics. Bagging PLSR yielded models with similar levels of prediction.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0733-5210

Non-destructive measurements of seed attributes would significantly enhance breeder selection of seeds with specific traits, and could potentially improve hybrid development. A single kernel near infrared reflectance (NIR) instrument was developed for rapidly predicting maize grain attributes, which would enable plant breeders to quickly select promising individual seeds. With the overall goal being to develop spectrometric calibrations, absorbance spectra from 904 to 1685 nm were collected from 87 maize samples, with 30 kernels of each sample (2610 kernels total), representing a wide variability in the essential amino acids tryptophan and lysine, crude protein, oil and soluble sugar contents. Average sample spectra were matched to bulk reference values. Partial least squares regression (PLSR) calibration models with cross-validation were developed for both relative (% dry matter) and absolute (mg kernel−1) constituent contents. Similarly, models using bagging PLSR were developed. The best model obtained was for relative crude protein content, with an R2p of 0.75 and a SEP of 0.47%. Kernel mass was also highly predictable (R2p=0.76, SEP=0.03 g). Tryptophan, lysine and oil were less predictable, but showed good potential for segregating individual seeds using NIR. Soluble sugar contents produced poor model statistics. Bagging PLSR yielded models with similar levels of prediction.

Global Maize Program

Text in English

Elsevier

INT2691

CIMMYT Staff Publications Collection

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org