Knowledge Center Catalog

Molecular characterization of the Glu-Ay gene from Triticum urartu for its potential use in quality wheat breeding

By: Contributor(s): Material type: ArticleArticleLanguage: En Publication details: 2011ISSN:
  • 1479-263X (Revista en electrónico)
  • 1479-2621
Subject(s): In: Plant Genetic Resources: Characterization and Utilization v. 9, no. 2, p. 334-337Summary: Triticum urartu Thum. ex Gandil. is a wild species identified as A-genome donor for polyploid wheats, which could be used as gene source for wheat breeding. The high-molecular weight glutenin subunits are endosperm storage proteins that are associated with bread-making quality. In T. urartu, these proteins are encoded by the Ax and Ay genes at the Glu-Au1 locus. The Ay gene of 17 Glu-Au1 allelic variants previously detected in this species has been analysed using PCR amplification and digestion of the PCR products with two endonucleases (DdeI and PstI). The combination of two restriction patterns has revealed variations between the active and inactive alleles, and within each type. This variation, especially that detected among the active alleles, could enlarge the high-quality genetic pool of modern wheat and be used for bread-making quality improvement in durum and common wheat.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=1479-2621

Triticum urartu Thum. ex Gandil. is a wild species identified as A-genome donor for polyploid wheats, which could be used as gene source for wheat breeding. The high-molecular weight glutenin subunits are endosperm storage proteins that are associated with bread-making quality. In T. urartu, these proteins are encoded by the Ax and Ay genes at the Glu-Au1 locus. The Ay gene of 17 Glu-Au1 allelic variants previously detected in this species has been analysed using PCR amplification and digestion of the PCR products with two endonucleases (DdeI and PstI). The combination of two restriction patterns has revealed variations between the active and inactive alleles, and within each type. This variation, especially that detected among the active alleles, could enlarge the high-quality genetic pool of modern wheat and be used for bread-making quality improvement in durum and common wheat.

Global Wheat Program

English

No CIMMYT affiliation

Carelia Juarez

INT3466

Reprints Collection


International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org