Knowledge Center Catalog

Local cover image
Local cover image

Geostatistical analysis of quality protein maize outcrossing with pollen from adjacent normal endosperm maize varieties

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: USA : CSSA : Wiley, 2012.ISSN:
  • 1435-0653 (Online)
  • 0011-183X
Subject(s): Online resources: In: Crop Science v. 52, no. 3, p. 1235-1245Summary: Nutritional advantages of quality protein maize (QPM) (Zea mays L.) over normal endosperm maize (NM) were previously demonstrated by several researchers. However, QPM grain quality loss occurs when a QPM crop receives pollen from NM. This is because the opaque-2 gene allele that confers the QPM trait is recessive. The objective was to estimate outcrossing levels and patterns in QPM growing adjacent to NM. White grain QPM crops were grown on nine blocks of 0.21 ha each surrounded by at least a 10-m band of yellow NM at two sites in Zimbabwe. At maturity 160 samples of five QPM ears each were randomly selected to determine outcrossing. Outcrossing was estimated as percentage of yellow kernels on each ear. Ordinary kriging was used to estimate outcrossing levels in areas that were not sampled. Both prediction and error surfaces were produced for each block using the best ordinary kriging model out of the available 11 in ArcMAP 9.2 computer package. Results indicated that five models (exponential, stable, pentaspherical, rational quadratic, and J-Bessel) predicted outcrossing patterns of the nine experiments. Outcrossing levels were high (63 to 83%) in the peripheral areas of the QPM crops, but less than 20% outcrossing was observed on at least 60% of each of the crop areas with no significant compromise of QPM quality based on a QPM quality index of 0.8. In conclusion, QPM and NM can coexist, and ordinary kriging could be used in visualizing spatial distribution of outcrossing in a QPM crop.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0011-183X

Nutritional advantages of quality protein maize (QPM) (Zea mays L.) over normal endosperm maize (NM) were previously demonstrated by several researchers. However, QPM grain quality loss occurs when a QPM crop receives pollen from NM. This is because the opaque-2 gene allele that confers the QPM trait is recessive. The objective was to estimate outcrossing levels and patterns in QPM growing adjacent to NM. White grain QPM crops were grown on nine blocks of 0.21 ha each surrounded by at least a 10-m band of yellow NM at two sites in Zimbabwe. At maturity 160 samples of five QPM ears each were randomly selected to determine outcrossing. Outcrossing was estimated as percentage of yellow kernels on each ear. Ordinary kriging was used to estimate outcrossing levels in areas that were not sampled. Both prediction and error surfaces were produced for each block using the best ordinary kriging model out of the available 11 in ArcMAP 9.2 computer package. Results indicated that five models (exponential, stable, pentaspherical, rational quadratic, and J-Bessel) predicted outcrossing patterns of the nine experiments. Outcrossing levels were high (63 to 83%) in the peripheral areas of the QPM crops, but less than 20% outcrossing was observed on at least 60% of each of the crop areas with no significant compromise of QPM quality based on a QPM quality index of 0.8. In conclusion, QPM and NM can coexist, and ordinary kriging could be used in visualizing spatial distribution of outcrossing in a QPM crop.

Global Maize Program

Text in English

CIMMYT Informa No. 1793|Crop Science Society of America (CSSA)

INT3439|INT2704

CIMMYT Staff Publications Collection

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org