Knowledge Center Catalog

Local cover image
Local cover image

Effects of light environment on maize in hillside agroforestry systems of Nepal

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: USA : Springer, 2012.ISSN:
  • 1876-4525 (Online)
  • 1876-4517
Subject(s): Online resources: In: Food Security v. 4, no. 1, p. 103-114Summary: Maize (Zea mays L.) is the most important staple food in the mid-hills region of Nepal. The mid-hills are characterized by steeply sloping land and complex farming systems where crops, livestock and trees are inseparable components, and maize has to compete with trees grown for fodder, fuel wood, building materials and other purposes in a landscape severely constrained for agricultural purposes. This paper reports the effects of the presence of trees growing on crop terrace risers on bari (upper-slope, rainfed) land on growth and yield of maize grown on terrace benches. Maize performance was compared with and without tree and artificial shade to determine its responses above and below ground to such limiting factors. Mean photosynthetic photon flux density (PPFD) incident on maize in farm conditions was lower than 700 ìmol m-2 s-1, well below the light saturation point for maize (1,500 ìmol m−2 s−1). Grain yield was reduced by 33% under tree shade and by 43% under artificial shade compared with natural (unshaded) conditions. As the light environment is sub-optimal for maize, the crop rarely achieved maximum rates of photosynthesis. Farmers claim that local landraces are better adapted to shade than station-bred genotypes, but there was no evidence of varietal effects upon rates of photosynthesis. However, there was some evidence that there were varietal adaptations to shade for other factors such as greater numbers of leaves and more competitive rooting patterns. Maize varieties with deeper root systems and adapted to low light conditions are required if productivity in these complex systems is to be improved. The findings of this study should be useful to breeders in developing maize genotypes suitable for the complex hillside systems of Nepal, thereby improving food security.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-6617 (Browse shelf(Opens below)) Available
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=1876-4517

Maize (Zea mays L.) is the most important staple food in the mid-hills region of Nepal. The mid-hills are characterized by steeply sloping land and complex farming systems where crops, livestock and trees are inseparable components, and maize has to compete with trees grown for fodder, fuel wood, building materials and other purposes in a landscape severely constrained for agricultural purposes. This paper reports the effects of the presence of trees growing on crop terrace risers on bari (upper-slope, rainfed) land on growth and yield of maize grown on terrace benches. Maize performance was compared with and without tree and artificial shade to determine its responses above and below ground to such limiting factors. Mean photosynthetic photon flux density (PPFD) incident on maize in farm conditions was lower than 700 ìmol m-2 s-1, well below the light saturation point for maize (1,500 ìmol m−2 s−1). Grain yield was reduced by 33% under tree shade and by 43% under artificial shade compared with natural (unshaded) conditions. As the light environment is sub-optimal for maize, the crop rarely achieved maximum rates of photosynthesis. Farmers claim that local landraces are better adapted to shade than station-bred genotypes, but there was no evidence of varietal effects upon rates of photosynthesis. However, there was some evidence that there were varietal adaptations to shade for other factors such as greater numbers of leaves and more competitive rooting patterns. Maize varieties with deeper root systems and adapted to low light conditions are required if productivity in these complex systems is to be improved. The findings of this study should be useful to breeders in developing maize genotypes suitable for the complex hillside systems of Nepal, thereby improving food security.

Conservation Agriculture Program

Text in English

CIMMYT Informa No. 1781|Springer

INT3018

CIMMYT Staff Publications Collection

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org