Normal view MARC view ISBD view

Evaluation of durum wheat experimental lines under different climate and water regime conditions of Iran

By: Mohammadi, R.
Contributor(s): Amri, A | Armion, M [coaut.] | Sadeghzadeh, D [coaut.].
Material type: materialTypeLabelArticlePublisher: 2011Subject(s): abiotic stresses | Durum wheat | principal component analysis | AMMI biplot | Genotype discrimination | Yield stability performance In: Crop and Pasture Science v. 62, p. 137-151Summary: In the Mediterranean region, grain yield of durum wheat is frequently limited by both high temperature and drought during grain filling.Atotal of six sets of paired trials, including 18 durum experimental lines and two durum and bread wheat landraces, were conducted in the field under three moderate (no stress), warm (stress) and cold (stress) climate conditions and two different water regimes [i.e. rain-fed (terminal stress) and two supplemental irrigations (no stress)] conditions for two cropping seasons (2005-06 and 2006-07) in Iran. Several stress indices (i.e. drought, heat, and cold) obtained from grain yield data under different climate and water regime conditions were used to analyse relationships between genotypic grain yield data of 20 genotypes and their tolerance to different stresses. The additive main effect and multiplicative interaction (AMMI) analysis was also used to capture a large portion of the genotype by environment (GE) interaction sum of squares and to separate main and interaction effects. The combined ANOVA revealed significant differences between locations, water regimes (rain-fed v. irrigation) and their effects in discriminating among the genotypes. The genotypic yields in both rain-fed and irrigated conditions were positively associated (P < 0.01) at the moderate and warm locations; but were adversely correlated (P < 0.05) at cold locations, suggesting that a high-yield potential under two supplemental irrigations does not necessarily result in improved yield under rain-fed conditions. The results verified that grain yield increased in response to irrigation, but some genotypes were more sensitive to environmental differences depending on year and location. Relative reduction of grain yield due to drought was a promising trait to improve drought tolerance indirectly inwarmand moderate locations. Estimates of broad-sense heritability also varied with climate conditions. Based on principal component analysis (PCA), the different stress indices tended to discriminate genotypes in dissimilar fashions. The results also indicate that it was possible to identify superior genotypes based on single and multiple abiotic stresses (drought, heat and cold). The genotypes G4 and G5 had general tolerance to the three abiotic stresses while the G19 and G15 were tolerant to drought and cold stresses and G18 and G17 were tolerant to heat stress. According to AMMI biplot analysis, the genotypes G4 and G9 were the best in terms of both mean yield and minimal GE interaction, indicating that selecting for improved yield may increase yield in a wide range of environments.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

Reprints Collection Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=1836-0947

In the Mediterranean region, grain yield of durum wheat is frequently limited by both high temperature and drought during grain filling.Atotal of six sets of paired trials, including 18 durum experimental lines and two durum and bread wheat landraces, were conducted in the field under three moderate (no stress), warm (stress) and cold (stress) climate conditions and two different water regimes [i.e. rain-fed (terminal stress) and two supplemental irrigations (no stress)] conditions for two cropping seasons (2005-06 and 2006-07) in Iran. Several stress indices (i.e. drought, heat, and cold) obtained from grain yield data under different climate and water regime conditions were used to analyse relationships between genotypic grain yield data of 20 genotypes and their tolerance to different stresses. The additive main effect and multiplicative interaction (AMMI) analysis was also used to capture a large portion of the genotype by environment (GE) interaction sum of squares and to separate main and interaction effects. The combined ANOVA revealed significant differences between locations, water regimes (rain-fed v. irrigation) and their effects in discriminating among the genotypes. The genotypic yields in both rain-fed and irrigated conditions were positively associated (P < 0.01) at the moderate and warm locations; but were adversely correlated (P < 0.05) at cold locations, suggesting that a high-yield potential under two supplemental irrigations does not necessarily result in improved yield under rain-fed conditions. The results verified that grain yield increased in response to irrigation, but some genotypes were more sensitive to environmental differences depending on year and location. Relative reduction of grain yield due to drought was a promising trait to improve drought tolerance indirectly inwarmand moderate locations. Estimates of broad-sense heritability also varied with climate conditions. Based on principal component analysis (PCA), the different stress indices tended to discriminate genotypes in dissimilar fashions. The results also indicate that it was possible to identify superior genotypes based on single and multiple abiotic stresses (drought, heat and cold). The genotypes G4 and G5 had general tolerance to the three abiotic stresses while the G19 and G15 were tolerant to drought and cold stresses and G18 and G17 were tolerant to heat stress. According to AMMI biplot analysis, the genotypes G4 and G9 were the best in terms of both mean yield and minimal GE interaction, indicating that selecting for improved yield may increase yield in a wide range of environments.

English

CSIRO|CSIRO

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org