A MALDI-TOF based analysis of high molecular weight glutenin subunits for wheat breeding
Material type: ArticleLanguage: English Publication details: USA : Elsevier, 2009.ISSN:- 0733-5210
Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Article | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | CIS-5603 (Browse shelf(Opens below)) | Available |
Browsing CIMMYT Knowledge Center: John Woolston Library shelves, Collection: CIMMYT Staff Publications Collection Close shelf browser (Hides shelf browser)
Peer review
Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0733-5210
High molecular weight glutenin subunits play an important role in determining wheat dough quality as they confer visco-elastic properties to the dough required for mixing and baking performance. In this work, a collection of 103 genotypes of common wheat from 12 countries was used to analyse the composition of HMW-GS by SDS-PAGE and MALDI-TOF-MS. Results indicated that MALDI-TOF technology is suitable for analyzing most HMW-GS alleles. The allelic diversity at Glu-B1 locus include subunits 6+8b*, 7, 7+8, 7+8a*, 7b*+8, 7OE, 7OE+8, 7OE+8a*, 7OE+8b*, 7+9, 13+16, 14+15, 17+18 and 20. The rapid identification of HMW-GS capability of MALDI-TOF-MS is discussed in relation to its value for screening lines in wheat breeding programs, especially in discriminating subunits 7OE, 8a* and 8b* associated with superior quality. A new glutenin subunit 7b*+8 was found in Japanese germplasm Eshimashinriki.
Global Wheat Program
Text in English
Elsevier
INT2411