Characterization of two 1D-encoded ω-gliadin subunits closely related to dough strength and pan bread-making quality in common wheat (Triticum aestivum L.)
Material type: ArticleLanguage: English Publication details: USA : Elsevier, 2008.ISSN:- 0733-5210
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|---|
Article | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | CIS-5325 (Browse shelf(Opens below)) | 1 | Available | 635220 |
Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0733-5210
Peer review
Gliadin proteins of 113 common or bread wheat (Triticum aestivum L.) cultivars and advanced lines from China and other countries, were analyzed by high performance capillary electrophoresis (HPCE) and reversed-phase high performance liquid chromatography (RP-HPLC). A major protein peak migrating at 3 min by HPCE and eluting at about 20 min by RP-HPLC was identified in the ω-gliadin region. It was present in cultivars with good pan bread-making quality, whereas most cultivars with poor bread-making quality lacked this protein peak. Quality testing and statistical analysis showed that this ω-gliadin peak was significantly related to dough strength, loaf volume and loaf score. It was separated into two apparent protein components by one-dimensional SDS-PAGE and two-dimensional electrophoresis (2-DE). According to their relative mobilities on the gels, the proteins were designated ω-15 and ω-16, and their accurate molecular masses (42590.5 Da for ω-15 and 41684.1 Da for ω-16) were determined by MALDI-TOF-MS. The ω-15 and ω-16 gliadins possessed the N-terminal amino acid sequences of ARELNPSNKELQQQQ and KELQSPQQQF, and therefore they belonged to 1D-encoded ω-2 type and ω-1 type gliadins, respectively. Both gliadin subunits were always present together among the 86 cultivars analyzed, suggesting that they were encoded by two closely linked genes at Gli-D1 locus. The accumulative characteristics of gliadins during grain development indicated possible additive quantitative effects of ω-15+16 on dough strength. The ω-15 and ω-16 gliadins could be used as valuable genetic markers for wheat quality improvement.
Global Wheat Program
Text in English
Elsevier
INT2411
CIMMYT Staff Publications Collection