Knowledge Center Catalog

Local cover image
Local cover image

Classification of Peruvian highland maize races using plant traits

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Dordrecht (Netherlands) : Springer, 2008.ISSN:
  • 1573-5109 (Online)
  • 0925-9864
Subject(s): Online resources: In: Genetic Resources and Crop Evolution v. 55, no. 1, p. 151-162635086Summary: The maize of Latin America, with its enormous diversity, has played an important role in the development of modern maize cultivars of the American continent. Peruvian highland maize shows a high degree of variation stemming from its history of cultivation by Andean farmers. Multivariate statistical methods for classifying accessions have become powerful tools for classifying genetic resources conservation and the formation of core subsets. This study has two objectives: (1) to use a numerical classification strategy for classifying eight Peruvian highland races of maize based on six vegetative traits evaluated in two years and (2) to compare this classification with the existing racial classification. The numerical classification maintained the main structure of the eight races, but reclassified parts of the races into new groups (Gi). The new groups are more separated and well defined with a decreasing accession within group × environment interaction. Most of the accessions from G1 are from Cusco Gigante, all of the accessions from G3 (except one) are from Confite Morocho, and all of the accessions from G7 are from Chullpi. Group G2 has four accessions from Huayleño and four accessions from Paro, whereas G4 has four accessions from Huayleño and five accessions from San Geronimo. Group G5 has accessions from four races, and G6 and G8 formed small groups with two and one accession each, respectively. These groups can be used for forming core subsets for the purpose of germplasm enhancement and assembling gene pools for further breeding.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0925-9864

The maize of Latin America, with its enormous diversity, has played an important role in the development of modern maize cultivars of the American continent. Peruvian highland maize shows a high degree of variation stemming from its history of cultivation by Andean farmers. Multivariate statistical methods for classifying accessions have become powerful tools for classifying genetic resources conservation and the formation of core subsets. This study has two objectives: (1) to use a numerical classification strategy for classifying eight Peruvian highland races of maize based on six vegetative traits evaluated in two years and (2) to compare this classification with the existing racial classification. The numerical classification maintained the main structure of the eight races, but reclassified parts of the races into new groups (Gi). The new groups are more separated and well defined with a decreasing accession within group × environment interaction. Most of the accessions from G1 are from Cusco Gigante, all of the accessions from G3 (except one) are from Confite Morocho, and all of the accessions from G7 are from Chullpi. Group G2 has four accessions from Huayleño and four accessions from Paro, whereas G4 has four accessions from Huayleño and five accessions from San Geronimo. Group G5 has accessions from four races, and G6 and G8 formed small groups with two and one accession each, respectively. These groups can be used for forming core subsets for the purpose of germplasm enhancement and assembling gene pools for further breeding.

Genetic Resources Program

Text in English

Springer

INT3239|CCJL01

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org