Knowledge Center Catalog

Local cover image
Local cover image

Identification of HWM-GS in Glu-B1 loci by HPLC and the effects of 7oe on wheat dough strength

By: Contributor(s): Material type: ArticleArticleLanguage: Chinese Publication details: Beijing (China) : Science Press, 2007.ISSN:
  • 0496-3490
Subject(s): Online resources: In: Acta Agronomica Sinica v. 33, no. 10, p. 1575-1581635010Summary: Correct identification of high molecular weight glutenin subunits (HMW-GS), and clarify their effects on wheat dough properties are very important in wheat (Triticum aestivum L.) quality study. Sixty-two cultivars or lines were used in present study to identify the composition of HMW-GS by SDS-PAGE and reversed-phase high-performance liquid chromatography (RP-HPLC). The results showed that combination of SDS-PAGE and RP-HPLC can effectively identify the composition of HWM-GS in Glu-B1 loci, especially for Glu-B1(7+8). Thirteen sib lines were used to study the effect of Glu-B1al (7OE+8*) and protein fractions on wheat quality properties related to dough strength by RP-HPLC and size-exclusion high-performance liquid chromatography (SE-HPLC). The results showed that sib lines with Glu-B1al (7OE+8*) significantly increased the quantity of HMW-GS, thus significantly improved dough strength, which could be used as high quality subunits in improving wheat gluten strength. Correlation analysis showed that the quantity of total glutenin, HMW-GS, LMW-GS and x-HMW were highly and positively correlated with extensograph maximum resistance (Rmax) with r of 0.76, 0.76, 0.77 and 0.72 (P<0.01), respectively. The relative content of SDS-unextractable glutenin polymeric protein (UPP percentage) were highly and positively correlated with mixograph development time (MDT), farinograph development time (DT) and stability (ST), and Rmax with r of 0.77 (P<0.01), 0.90 (P<0.001), 0.89 (P<0.001) and 0.87 (P<0.001) , respectively. The ratio of gliadin to glutenin in quantity was negatively and significantly correlated with MDT, ST and Rmax with r of -0.69 (P<0.01), -0.58 (P<0.05) and -0.64 (P<0.05) , respectively. HPLC is a useful tool for wheat quality breeding.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Abstract in English and Chinese.

Peer-review: No - Open Access: Yes|http://211.155.251.148:8080/zwxb/EN/column/column81.shtml

Peer review

Open Access

Correct identification of high molecular weight glutenin subunits (HMW-GS), and clarify their effects on wheat dough properties are very important in wheat (Triticum aestivum L.) quality study. Sixty-two cultivars or lines were used in present study to identify the composition of HMW-GS by SDS-PAGE and reversed-phase high-performance liquid chromatography (RP-HPLC). The results showed that combination of SDS-PAGE and RP-HPLC can effectively identify the composition of HWM-GS in Glu-B1 loci, especially for Glu-B1(7+8). Thirteen sib lines were used to study the effect of Glu-B1al (7OE+8*) and protein fractions on wheat quality properties related to dough strength by RP-HPLC and size-exclusion high-performance liquid chromatography (SE-HPLC). The results showed that sib lines with Glu-B1al (7OE+8*) significantly increased the quantity of HMW-GS, thus significantly improved dough strength, which could be used as high quality subunits in improving wheat gluten strength. Correlation analysis showed that the quantity of total glutenin, HMW-GS, LMW-GS and x-HMW were highly and positively correlated with extensograph maximum resistance (Rmax) with r of 0.76, 0.76, 0.77 and 0.72 (P<0.01), respectively. The relative content of SDS-unextractable glutenin polymeric protein (UPP percentage) were highly and positively correlated with mixograph development time (MDT), farinograph development time (DT) and stability (ST), and Rmax with r of 0.77 (P<0.01), 0.90 (P<0.001), 0.89 (P<0.001) and 0.87 (P<0.001) , respectively. The ratio of gliadin to glutenin in quantity was negatively and significantly correlated with MDT, ST and Rmax with r of -0.69 (P<0.01), -0.58 (P<0.05) and -0.64 (P<0.05) , respectively. HPLC is a useful tool for wheat quality breeding.

Global Wheat Program

Text in Chinese

INT2411

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org