Knowledge Center Catalog

Local cover image
Local cover image

Nutrient uptake and apparent balances for rice-wheat sequences. I. Nitrogen

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: New York (USA) : Taylor & Francis, 2006.ISSN:
  • 0190-4167
  • 1532-4087 (Online)
Subject(s): Online resources: In: Journal of Plant Nutrition v. 29, no. 1, p. 137-155633996Summary: Nitrogen (N) nutrition of the rice-wheat (RW) systems of the Indo-Gangetic Plain is important for sustaining the region's productivity and food needs. Soil N plays an important role in regulating the supply of N to plants. Monitoring plant concentrations, uptake, and balance of N assist in our understanding of plant and soil N status and in devising N-fertilizer strategies for both individual crops and a cropping system. Field experiments with rice-wheat-mungbean and rice-wheat-maize annual cropping sequences were conducted at Joydebpur, Nashipur, and Ishwordi in Bangladesh, which differ in their soils and climates. The experiments compared three pre-rice treatments (mungbean residues retained, mungbean residues removed, and maize residues removed), supplying each with two fertilizer levels (soil-test based, or STB, and farmers' practice, or FP). Zero N (control) treatments were included, with all other nutrients applied as STB or FP. The objectives were to detect N deficiency, if any, in the component crops, and to determine the changes in soil N fertility, plant N uptake, and soil N balance for various RW sequences. There was a significant decrease in mineral N in the topsoil (0–15 cm) of the +N mungbean and maize-residues removed treatments at Ishwordi, and a generally significant but less marked decline under the same treatments at Nashipur. Wheat and maize crops suffered from N deficiency ranging from 33% to 95% each year, at all sites, but deficiency in rice and mungbean was minimal. Annual system-level N uptake across sites ranged from 89 kg ha−1 for the control to 239 kg ha−1 for sequences containing maize with N. There were significant linear relationships between total system productivity (TSP) and annual N application and between TSP and annual system-level N uptake. Considering no N loss through the system, N fertilizer resulted in a positive N balance that ranged between 24–190 kg ha−1 compared with a negative balance of between 40–49 kg ha−1 without it. However, if a 30% N loss was assumed, N balances were reduced to between −37–62 kg/ha−1 for N-containing treatments, and to between −64–55 kg/ha−1 for the control treatments. Further research is needed to understand N depletion and replenishment and to sustain the productivity of the RW system.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-4700 (Browse shelf(Opens below)) 1 Available 633996
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0190-4167

Nitrogen (N) nutrition of the rice-wheat (RW) systems of the Indo-Gangetic Plain is important for sustaining the region's productivity and food needs. Soil N plays an important role in regulating the supply of N to plants. Monitoring plant concentrations, uptake, and balance of N assist in our understanding of plant and soil N status and in devising N-fertilizer strategies for both individual crops and a cropping system. Field experiments with rice-wheat-mungbean and rice-wheat-maize annual cropping sequences were conducted at Joydebpur, Nashipur, and Ishwordi in Bangladesh, which differ in their soils and climates. The experiments compared three pre-rice treatments (mungbean residues retained, mungbean residues removed, and maize residues removed), supplying each with two fertilizer levels (soil-test based, or STB, and farmers' practice, or FP). Zero N (control) treatments were included, with all other nutrients applied as STB or FP. The objectives were to detect N deficiency, if any, in the component crops, and to determine the changes in soil N fertility, plant N uptake, and soil N balance for various RW sequences. There was a significant decrease in mineral N in the topsoil (0–15 cm) of the +N mungbean and maize-residues removed treatments at Ishwordi, and a generally significant but less marked decline under the same treatments at Nashipur. Wheat and maize crops suffered from N deficiency ranging from 33% to 95% each year, at all sites, but deficiency in rice and mungbean was minimal. Annual system-level N uptake across sites ranged from 89 kg ha−1 for the control to 239 kg ha−1 for sequences containing maize with N. There were significant linear relationships between total system productivity (TSP) and annual N application and between TSP and annual system-level N uptake. Considering no N loss through the system, N fertilizer resulted in a positive N balance that ranged between 24–190 kg ha−1 compared with a negative balance of between 40–49 kg ha−1 without it. However, if a 30% N loss was assumed, N balances were reduced to between −37–62 kg/ha−1 for N-containing treatments, and to between −64–55 kg/ha−1 for the control treatments. Further research is needed to understand N depletion and replenishment and to sustain the productivity of the RW system.

Text in English

0603

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org