Sampling strategies for conserving maize diversity when forming core subsets using genetic markers
Material type: ArticleLanguage: English Publication details: Madison, WL (USA) : CSSA : Wiley, 2006.ISSN:- 1435-0653 (Online)
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|---|
Article | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | CIS-4691 (Browse shelf(Opens below)) | 1 | Available | 633987 |
Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0011-183X
Peer erview
Open Access
Core subsets can be formed on the basis of molecular markers and different sampling strategies. This research used genetic markers on three maize data sets for studying 24 stratified sampling strategies to investigate which strategy conserved the most diversity in the core subset as compared with the original sample. The strategies were formed by combining three factors: (i) two clustering methods (UPGMA and Ward), based on (ii) two initial genetic distance measures, and using (iii) six allocation criteria [two based on the size of the cluster and four based on maximizing distances in the core (the D method) used with four diversity indices]. The objectives were (i) to study the influence of these factors and their interaction on the diversity of the core subsets and (ii) to compare the 24 stratified sampling strategies with the M strategy implemented in the MSTRAT algorithm. Success of each strategy was measured on the basis of maximizing genetic distances (Modified Roger and Cavalli‐Sforza and Edwards distances) and genetic diversity indices (Shannon index, proportion of heterozygous loci, and number of effective alleles) in each core. Twenty independent stratified random samples were obtained for each strategy using a sampling intensity of 20% of the collection. For the three data sets, the UPGMA with D allocation methods produced core subsets with significantly more diversity than the other methods and were better than the M strategy for maximizing genetic distance. For most of the diversity indices, the M strategy outperformed the D method.
Genetic Resources Program
Text in English
Crop Science Society of America (CSSA)|0603
CCJL01