Knowledge Center Catalog

Local cover image
Local cover image

Drought tolerance improvement in tropical maize source populations : evidence of progress

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: USA : CSSA : Wiley, 2006.ISSN:
  • 1435-0653 (Online)
Subject(s): Online resources: In: Crop Science v. 46, no. 1, p. 180-191633724Summary: The objectives of this study were to evaluate direct and correlated responses to recurrent selection for drought tolerance in two CIMMYT maize (Zea mays L.) source germplasm populations, ‘DTP1’ and ‘DTP2’, adapted to the lowland and mid-altitude tropics. Selection was primarily based on grain yield, ears per plant, anthesis-silking interval, and leaf senescence under drought. Cycles C0, C3, and C6 of DTP1 and C0, C3, C5 and C9 of DTP2 were evaluated under drought, low N, and optimal conditions. In both populations, significant yield gains were observed under drought conditions, associated with a significant increase in numbers of ears per plant and grains per ear, and significant reductions in anthesis-silking interval, ovule number and abortion rate during grain filling. Abortion rate was positively correlated with the number of ovules at silking and with anthesis-silking interval. In DTP1, recurrent selection under drought was associated with a derease of tassel and stem dry weight and with an increase of ear dry weight and harvest index. This study confirms the effectiveness of recurrent selection under drought as a means of improving tropical maize source populations for performance under water deficits and to a lesser extent under low N. The primary mechanism underlying these changes appears to be improved partitioning of assimilates to the ear at flowering, at the expense of tassel and stem growth.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-4594 (Browse shelf(Opens below)) 1 Available 633724
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0011-183X

The objectives of this study were to evaluate direct and correlated responses to recurrent selection for drought tolerance in two CIMMYT maize (Zea mays L.) source germplasm populations, ‘DTP1’ and ‘DTP2’, adapted to the lowland and mid-altitude tropics. Selection was primarily based on grain yield, ears per plant, anthesis-silking interval, and leaf senescence under drought. Cycles C0, C3, and C6 of DTP1 and C0, C3, C5 and C9 of DTP2 were evaluated under drought, low N, and optimal conditions. In both populations, significant yield gains were observed under drought conditions, associated with a significant increase in numbers of ears per plant and grains per ear, and significant reductions in anthesis-silking interval, ovule number and abortion rate during grain filling. Abortion rate was positively correlated with the number of ovules at silking and with anthesis-silking interval. In DTP1, recurrent selection under drought was associated with a derease of tassel and stem dry weight and with an increase of ear dry weight and harvest index. This study confirms the effectiveness of recurrent selection under drought as a means of improving tropical maize source populations for performance under water deficits and to a lesser extent under low N. The primary mechanism underlying these changes appears to be improved partitioning of assimilates to the ear at flowering, at the expense of tassel and stem growth.

Text in English

Crop Science Society of America (CSSA)|0009

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org