Comparative map and trait viewer (CMTV) : an integrated bioimformatic tool to construct consensus maps and compare QTL and functional genomics data across genomes and experiments
Material type: ArticleLanguage: English Publication details: Dordrecht (Netherlands) : Springer, 2004.ISSN:- 0167-4412
- 1573-5028 (Online)
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|---|
Article | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | CIS-4265 (Browse shelf(Opens below)) | 1 | Available | 630552 |
Browsing CIMMYT Knowledge Center: John Woolston Library shelves, Collection: CIMMYT Staff Publications Collection Close shelf browser (Hides shelf browser)
Peer review
Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0167-4412
In the past few decades, a wealth of genomic data has been produced in a wide variety of species using a diverse array of functional and molecular marker approaches. In order to unlock the full potential of the information contained in these independent experiments, researchers need efficient and intuitive means to identify common genomic regions and genes involved in the expression of target phenotypic traits across diverse conditions. To address this need, we have developed a Comparative Map and Trait Viewer (CMTV) tool that can be used to construct dynamic aggregations of a variety of types of genomic datasets. By algorithmically determining correspondences between sets of objects on multiple genomic maps, the CMTV can display syntenic regions across taxa, combine maps from separate experiments into a consensus map, or project data from different maps into a common coordinate framework using dynamic coordinate translations between source and target maps. We present a case study that illustrates the utility of the tool for managing large and varied datasets by integrating data collected by CIMMYT in maize drought tolerance research with data from public sources. This example will focus on one of the visualization features for Quantitative Trait Locus (QTL) data, using likelihood ratio (LR) files produced by generic QTL analysis software and displaying the data in a unique visual manner across different combinations of traits, environments and crosses. Once a genomic region of interest has been identified, the CMTV can search and display additional QTLs meeting a particular threshold for that region, or other functional data such as sets of differentially expressed genes located in the region; it thus provides an easily used means for organizing and manipulating data sets that have been dynamically integrated under the focus of the researcher’s specific hypothesis.
Generation Challenge Program
Text in English
0501|AL-ABC Program
INT1991