Physiological mechanisms contributing to the increased N stress tolerance of tropical maize selected for drought tolerance
Material type: ArticleLanguage: English Publication details: Amsterdam (Netherlands) : Elsevier, 2002.ISSN:- 0378-4290
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|---|
Article | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | CIS-2468 (Browse shelf(Opens below)) | 1 | Available | 631266 |
Browsing CIMMYT Knowledge Center: John Woolston Library shelves, Collection: CIMMYT Staff Publications Collection Close shelf browser (Hides shelf browser)
Peer review
Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0378-4290
An improved response of crop varieties to various stress factors may be associated to constitutive stress tolerance mechanisms that increase yield and yield stability. Increased leaf longevity, increased water and nutrient uptake, greater assimilate supply during grain filling, and increased grain and ear set have been associated with constitutive stress tolerance mechanisms in maize (Zea mays L.). We examined tropical maize for adaptive changes associated with drought tolerance that are sustained under N stress and therefore may indicate constitutive stress tolerance mechanisms. Original and drought-tolerant selection cycles of four populations were evaluated in five experiments differing in N supply at Poza Rica, Mexico between 1992 and 1994. Selection for tolerance to mid-season drought stress consistently increased grain yield across N levels due to an increase in both the number of ears per plant and kernel weight. The number of ears per plant was associated with a shorter anthesis–silking interval (ASI) of drought-tolerant cycles. Reduction in ASI due to selection was greater under N stress as compared to well-fertilized conditions, however, it was not associated with either biomass or N accumulation of plants and ears around flowering. The N content of individual kernels did not change with selection and grain N concentration decreased. Greater kernel weights were likely the result of delayed leaf senescence and increased assimilate supply during grain filling. We conclude that decreased ear abortion and increased assimilate supply during grain filling of maize selected for tolerance to mid-season drought also provide tolerance to N stress and therefore may contribute to increased yield and yield stability.
Research and Partnership Program
Text in English
0206|Elsevier|AL-Maize Program|R01JOURN
INT1888