000 03625nab|a22004457a|4500
001 69549
003 MX-TxCIM
005 20251219160656.0
008 251120s2025||||sz |||p|op||||00||0|eng|d
022 _a2160-1836 (Online)
024 8 _ahttps://doi.org/10.1093/g3journal/jkaf183
040 _aMX-TxCIM
041 _aeng
100 1 _aVillar-Hernandez, B.d.J.
_97952
245 1 0 _aBayesian divergence-based approach for genomic multitrait ordinal selection
260 _aBethesda, MD (United States of America) :
_bOxford University Press,
_c2025.
500 _aPeer review
500 _aOpen Access
520 _aEffective genomic selection for ordinal traits, such as disease resistance scores, is a persistent challenge in plant breeding due to the discrete, ordered nature of these phenotypes. This study presents a novel Bayesian divergence-based framework for multitrait ordinal selection, implemented in the extended Multitrait Parental Selection R package (MPS-R). By leveraging decision-theoretic loss functions, including the Kullback–Leibler (KL) divergence, Bhattacharyya distance, and Hellinger distance, our approach quantifies the distance between candidate distributions and breeder-defined target distributions. Through extensive simulations under 6 scenarios combining different genetic correlation structures and heritability levels, we demonstrate the comparative performance of each loss function. KL divergence consistently yielded superior genetic gains, especially in moderate heritability settings. Additionally, random sampling validation using real wheat disease resistance data confirmed the utility of these methods in practical breeding contexts. The MPS-R package implements this methodology through user-friendly functions tailored for ordinal trait selection in breeding applications. Our results demonstrate that this toolset provides a flexible, robust, and biologically grounded framework to enhance selection efficiency in breeding programs targeting complex, multitrait ordinal phenotypes. A couple of limitations employed by the simulation scheme used on the study are also discussed.
546 _aText in English
591 _aVillar-Hernandez, B.d.J. : Not in IRS staff list but CIMMYT Affiliation
591 _aLozano-Ramirez, N. : Not in IRS staff list but CIMMYT Affiliation
597 _dBill & Melinda Gates Foundation (BMGF)
_dAccelerating Genetic Gains in Maize and Wheat (AGG)
_dUnited States Agency for International Development (USAID)
_dCentro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT)
_fBreeding for Tomorrow
_uhttps://hdl.handle.net/10568/179091
650 7 _aBayesian theory
_2AGROVOC
_94013
650 7 _aMarker-assisted selection
_2AGROVOC
_910737
650 7 _aWheat
_2AGROVOC
_91310
650 7 _aBreeding
_2AGROVOC
_91029
650 7 _aGenomics
_2AGROVOC
_91132
650 7 _aForecasting
_2AGROVOC
_92701
700 1 _aPawan Kumar Singh
_gGlobal Wheat Program
_8INT2868
_9868
700 1 _aLozano-Ramirez, N.
_917230
700 1 _8001713327
_aVitale, P.
_gGenetic Resources Program
_931497
700 1 _aGerard, G.S.
_81713398
_gGlobal Wheat Program
_911490
700 1 _aBreseghello, F.
_8001715727
_gGlobal Wheat Program
_920853
700 1 _aDreisigacker, S.
_gGlobal Wheat Program
_8INT2692
_9851
700 1 _aCrossa, J.
_gGenetic Resources Program
_8CCJL01
_959
773 0 _tG3: Genes, Genomes, Genetics
_gv. 15, no. 10, p. jkaf183
_dBethesda, MD (United States of America) : Oxford University Press, 2025.
_x2160-1836
_w56922
856 4 _yOpen Access through DSpace
_uhttps://hdl.handle.net/10883/36139
942 _cJA
_n0
_2ddc
999 _c69549
_d69541