000 03447nab|a22004097a|4500
001 69514
003 MX-TxCIM
005 20251215135521.0
008 2511112025|||||ne ||p|op||||00||0|eng|dd
024 8 _ahttp://dx.doi.org/10.2139/ssrn.5345569
040 _aMX-TxCIM
041 _aeng
100 1 _aNdegwa, M.K.
_8001713077
_gSustainable Agrifood Systems
_91681
245 1 0 _aIs newer better? The effect of varietal age on real-world maize yield in Kenya
260 _aNetherlands :
_bElsevier,
_c2025.
500 _aPreprint
500 _aOpen Access
520 _aMaize varietal turnover is widely promoted across Sub-Saharan Africa to improve crop productivity and increase food security, yet its impact on yields remains poorly understood amid heterogeneous agroecological and socioeconomic conditions. This study quantifies the yield effects of varietal age in Kenya using a three-wave panel survey (2023-2024) of 4,160 smallholder households across Kenya. Using entropy balancing and weighted regression models to isolate the effect of varietal age on maize yield, we find a strong and consistent relationship between varietal age and yield. New varieties yield 147 kg/ha more than old ones in the long rains and 91 kg/ha more in the short rains. Finer age categorization reveals that switching to ultra-new varieties (0-5 years) delivers the highest gains-360 kg/ha over ultra-old varieties (21+ years) in the long rains and 269 kg/ha in the short rains. These findings suggest that slow varietal turnover carries significant opportunity costs in the form of forgone yield gains. While farmers generally perceive new varieties favorably-particularly for yield potential, early maturity and grain quality-concerns around labor intensity and resilience remain, potentially dampening adoption. Providing farmers with clear, locally relevant performance data and opportunities for on-farm experimentation can help shift perceptions and support wider uptake. Policies and programs that expand access to newer, better-performing varieties and strengthen seed quality assurance are essential for translating genetic gains into productivity improvements across Kenya's bimodal maize
546 _aText in English
591 _aNyangau, P.N. : No CIMMYT Affiliation
597 _aClimate adaptation & mitigation
_aNutrition, health & food security
_aPoverty reduction, livelihoods & jobs
_bMarket Intelligence
_bSeed Equal
_cResilient Agrifood Systems
_cGenetic Innovation
_dBill & Melinda Gates Foundation (BMGF)
_uhttps://hdl.handle.net/10568/178118
_fBreeding for Tomorrow
650 7 _aEntropy
_2AGROVOC
_940511
650 7 _aSmallholders
_2AGROVOC
_91763
650 7 _aMaize
_2AGROVOC
_91173
650 7 _aYield gap
_2AGROVOC
_91356
650 7 _aSenses
_2AGROVOC
_938065
650 7 _aFertilizers
_2AGROVOC
_91111
651 7 _aKenya
_2AGROVOC
_93783
700 1 _8001715648
_aNyangau, P.N.
_gSustainable Agrifood Systems
_938256
700 1 _aKariuki, S.W.
_8N1706368
_gIntegrated Development Program
_gSustainable Agrifood Systems
_96403
700 1 _aDebello, M.J.
_gSustainable Agrifood Systems
_8INT3210
_9903
700 1 _aMichelson, H.C.
_931389
700 1 _aCairns, J.E.
_gGlobal Maize Program
_8INT2948
_9879
773 0 _tSocial Science Research Network (SSRN)
_gIn press
_dNetherlands : Elsevier, 2025
856 4 _yOpen Access through DSpace
_uhttps://hdl.handle.net/10883/36067
942 _cJA
_n0
_2ddc
999 _c69514
_d69506