000 04268nab|a22005297a|4500
001 69506
003 MX-TxCIM
005 20251215154743.0
008 202510s2025||||sz |||p|op||||00||0|eng|d
022 _a1664-462X
024 8 _ahttps://doi.org/10.3389/fpls.2025.1675993
040 _aMX-TxCIM
041 _aeng
100 1 _aSaavedra-Avila, J.I.
_938567
245 1 0 _aUnraveling the genetic basis of general combining ability in CIMMYT elite bread wheat germplasm :
_bimplications for breeding strategies optimization
260 _aSwitzerland :
_bFrontiers Media,
_c2025.
500 _aPeer review
500 _aOpen Access
520 _aIn wheat breeding programs, several hundred crosses are performed annually, but only individuals from a few families advance to the final stages of the breeding pipelines. Therefore, a deeper understanding of the general combining ability (GCA) of wheat genotypes might enhance the breeding efficiency in selecting parents. For this reason, we tested the performance of the offspring of similar to 1200 parental elite lines. Using a genome-wide association study (GWAS), gene ontology (GO) analysis, and genomic prediction (GP), our objectives were to i) identify marker-trait associates (MTAs) and candidate genes, ii) assess temporal allele frequency dynamics of identified MTAs, and iii) estimate prediction accuracy (PA) for key traits: Progeny Number per-Cross (PNC), grain yield (GY), and a combined index incorporating these traits ("index"). Our findings revealed a total of 13 MTAs: eight for GY, four for the "index", and one for PNC. The GO analysis highlighted several genes involved in hydrogen peroxide metabolism and catabolism processes (H2O2), reactive oxygen species, response to oxidative stress, cell wall biogenesis, the metabolic process of modified amino acids at the cellular level, and glutathione metabolic process for the studied traits. Notably, allele frequency analysis over time indicated that most MTAs are under positive selection, likely reflecting indirect breeder-driven selection. The highest PA was reached by using the reproducing kernel Hilbert space (RKHS) model for the trait GY (0.34). The identification of MTAs for PNC and GY provided insight into the biological pathways underpinning combining ability and demonstrated the potential for predicting the ability of the genotypes to be crossed. These findings might contribute to the optimization crossing strategy saving costs and increasing the breeding program efficiency.
546 _aText in English
591 _aSaavedra-Avila, J.I. : Not in IRS staff list but CIMMYT Affiliation
597 _aNutrition, health & food security
_aClimate adaptation & mitigation
_bAccelerated Breeding
_cGenetic Innovation
_dCGIAR Trust Fund
_uhttps://hdl.handle.net/10568/178354
_fBreeding for Tomorrow
610 2 0 _aCIMMYT
_939008
650 7 _aWheat
_2AGROVOC
_91310
650 7 _aBreeding
_2AGROVOC
_91029
650 7 _aCombining ability
_2AGROVOC
_92367
650 7 _aGenome-wide association studies
_2AGROVOC
_931443
650 7 _aForecasting
_2AGROVOC
_92701
650 7 _aEfficiency
_2AGROVOC
_94390
700 1 _aGerard, G.S.
_81713398
_gGlobal Wheat Program
_911490
700 1 _aEsposito, S.
_933033
700 1 _aVelu, G.
_gGlobal Wheat Program
_8INT2983
_9880
700 1 _aHuerta-Espino, J.
_gGlobal Wheat Program
_8CHUE01
_9397
700 1 _aTarekegn, Z.T.
_8001713397
_gGlobal Wheat Program
_931150
700 1 _aDreisigacker, S.
_gGlobal Wheat Program
_8INT2692
_9851
700 1 _aSaint Pierre, C.
_gGlobal Wheat Program
_8INT2731
_9855
700 1 _aPacheco Gil, R.A.
_8N1705917
_gGenetic Resources Program
_96455
700 1 _aToledo, F.H.
_gGenetic Resources Program
_8I1706676
_91999
700 1 _aGardner, K.A.
_8001712617
_gGenetic Resources Program
_917393
700 1 _aCrespo-Herrera, L.A.
_gGlobal Wheat Program
_8I1706538
_92608
700 1 _aCrossa, J.
_gGenetic Resources Program
_8CCJL01
_959
700 1 _8001713327
_aVitale, P.
_gGenetic Resources Program
_931497
773 0 _tFrontiers in Plant Science
_gv. 16, art. 1675993
_dSwitzerland : Frontiers Media, 2025
_x1664-462X
_w56875
856 4 _yOpen Access through DSpace
_uhttps://hdl.handle.net/10883/36164
942 _cJA
_n0
_2ddc
999 _c69506
_d69498