000 02265nam a22004097a 4500
001 G78645
003 MX-TxCIM
005 20211006084744.0
008 121211s ||||f| 0 p|p||0|| |
040 _aMX-TxCIM
072 0 _aF01
072 0 _aH50
082 0 4 _a631.53
_bBOO
100 1 _aGrudloyma, P.
_uBook of abstracts: Arnel R. Hallauer international symposium on plant breeding
_92050
110 0 _aCentro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), Mexico DF (Mexico)
111 2 _aArnel R. Hallauer International Symposium on Plant Breeding
_cMexico, D.F. (Mexico)
_d17-22 Aug 2003
245 0 0 _aIdentification of drought and low nitrogen tolerant maize germplasm in Thailand
260 _aMexico, DF (Mexico)
_bCIMMYT :
_c2003
300 _ap. 40-41
340 _aPrinted
520 _aMaize farmers face numerous constraints, including drought and low nitrogen (N). Drought stress damages an estimated 3 to 22% of the planted area in Thailand annually, resulting in yield losses of approximately 129,000 to 858,000 metric tons (worth 10 to 80 million US dol1ars). Maize is usual1y susceptible to stress at flowering stage (Grant et al. 1989).The maize population KK-DR was developed from six local materials and was improved for drought tolerance in Thailand (Manupeerapan et al. 1996). Drought resulted in a reduction in growth, dry matter, and N concentration in parts of the p1ants at 29 days after emergence (DAE) (Kraokaew and Chinchet 1998). Genetic variation in response to N supply to the maize population (Lafitte and Edmeades 1994) and inbred lines (Balko and Russell 1980) was observed. An inbred-hybrid approach, as opposed to population improvement, was used to breed for such stresses.
546 _aEnglish
591 _a0309|AGRIS 0301|AL-Maize Program
593 _aJuan Carlos Mendieta
595 _aCPC
650 1 0 _91080
_aDrought
_gAGROVOC
650 1 7 _aGermplasm
_gAGROVOC
_2
_91136
650 1 7 _aInbred lines
_gAGROVOC
_2
_91155
650 1 7 _aMaize
_gAGROVOC
_2
_91173
650 1 0 _aNitrogen content
650 1 0 _91313
_aYields
_gAGROVOC
650 1 0 _91151
_aHybrids
_gAGROVOC
700 1 _aDwangjan, W.,
_ecoaut.
700 1 _aPrasitwattanaseree, s.,
_ecoaut.
700 1 _aPumklom, M.,
_ecoaut.
942 _cPRO
999 _c6950
_d6950