000 03555nab|a22004937a|4500
001 69093
003 MX-TxCIM
005 20250815093232.0
008 20258s2025|||||ne ||p|op||||00||0|eng|dd
022 _a2352-9385 (Online)
024 8 _ahttps://doi.org/10.1016/j.rsase.2025.101660
040 _aMX-TxCIM
041 _aeng
100 1 _aRohden Prudente, V.H.
_939768
245 1 0 _aMapping grain crop sowing date in smallholder systems using optical imagery
260 _aAmsterdam (Netherlands) :
_bElsevier B.V.,
_c2025.
500 _aPeer review
500 _aOpen Access
520 _aSowing date prediction using Earth observation data is challenging in smallholder systems due to small field sizes, heterogeneity in management practices, and a lack of reference data. This study aims to develop a generalizable algorithm that does not require any ground data for calibration to map sowing date using the Normalized Difference Vegetation Index (NDVI) from three optical datasets: MODIS, Harmonized Landsat and Sentinel (HLS), and Sentinel-2. We applied Savitzky-Golay (SG) and spline smoothing algorithms to each dataset and developed a derivative approach to identify the inflection point that represents the Start of Season (SoS), which was then converted to sowing date. We applied our methodology to map the sowing date of winter wheat in Bihar, India and spring-summer maize in the state of Mexico, Mexico. Overall, Sentinel-2 data led to the highest accuracies, but the performance of the smoothing algorithm differed across locations. In India, prediction models using SG achieved an R2 of 0.45 and a root mean square deviation (RMSD) of 11.44 days. In Mexico, prediction models using spline performed best, with an R2 of 0.19 and an RMSD of 4.24 weeks. The lower accuracy in Mexico was due to more complex cropping patterns as well as noise in the observed sowing date dataset. Our algorithm shows potential to identify SoS, and ultimately sowing date, at scale using Sentinel-2 imagery. However, challenges from low-quality validation datasets, small field sizes, cloud cover, and landscape complexity continue to pose challenges to predict sowing date using Earth observation data products.
546 _aText in English
591 _aMcDonald, A. : No CIMMYT Affiliation
597 _dNASA Land-Cover and Land-Use Change (LCLUC)
650 7 _aLandsat
_2AGROVOC
_915758
650 7 _aModerate resolution imaging spectroradiometer
_2AGROVOC
_913736
650 7 _aMaize
_2AGROVOC
_91173
650 7 _aWheat
_2AGROVOC
_91310
650 7 _aSowing date
_2AGROVOC
_914747
650 7 _aSmallholders
_2AGROVOC
_91763
700 1 _aGarcia-Medina, M.
_917293
700 1 _aKrishna, V.V.
_8INT2994
_gSustainable Agrifood Systems
_9558
700 1 _8001712728
_aEuler, M.A.
_gSustainable Agrifood Systems
_921084
700 1 _aBhattarai, N.
_920314
700 1 _aLerner, A.M.
_939769
700 1 _aMcDonald, A.
_gSustainable Intensification Program
_8INT3034
_9883
700 1 _aSherpa, S.R.
_8001712516
_gSustainable Agrifood Systems
_928790
700 1 _aRajan, H.
_931205
700 1 _aUrfels, A.
_8001711637
_gFormerly Sustainable Agrifood Systems
_94925
700 1 _aCarneiro de Santana, C.T.
_939770
700 0 _aMeha Jain
_93814
773 0 _tRemote Sensing Applications: Society and Environment
_gv. 39, art. 101660
_dAmsterdam (Netherlands) : Elsevier B.V., 2025.
_x2352-9385
856 4 _yOpen Access through DSpace
_uhttps://hdl.handle.net/10883/35830
942 _cJA
_n0
_2ddc
999 _c69093
_d69085