| 000 | 04357nab|a22007337a|4500 | ||
|---|---|---|---|
| 001 | 69070 | ||
| 003 | MX-TxCIM | ||
| 005 | 20250731174923.0 | ||
| 008 | 20257s2025||||mx |||p|op||||00||0|eng|d | ||
| 022 | _a0168-1923 | ||
| 022 | _a1873-2240 (Online) | ||
| 024 | 8 | _ahttps://doi.org/10.1016/j.agrformet.2025.110697 | |
| 040 | _aMX-TxCIM | ||
| 041 | _aeng | ||
| 100 | 1 |
_aWallach, D. _91769 |
|
| 245 | 1 | 0 | _aWhy is there so much variability in crop multi-model studies? |
| 260 |
_aAmsterdam (Netherlands) : _bElsevier B.V., _c2025. |
||
| 500 | _aPeer review | ||
| 500 | _aOpen Access | ||
| 520 | _aIt has become common to compare crop model results in multi-model simulation experiments. In general, one observes a large variability in such studies, which reduces the confidence one can have in such models. It is important to understand the causes of this variability as a first step toward reducing it. For a given data set, the variability in a multi-model study can arise from uncertainty in model structure or in parameter values for a given structure. Previous studies have made assumptions about the origin of parameter uncertainty, and then quantified its contribution, generally finding that parameter uncertainty is less important than structure uncertainty. However, those studies do not take account of the full parameter variability in multi-model studies. Here we propose estimating parameter uncertainty based on open-call multi-model ensembles where the same structure is used by more than one modeling group. The variability in such a case is due to the full variability of parameters among modeling groups. Then structure and parameter contributions can be estimated using random effects analysis of variance. Based on three multi-model studies for simulating wheat phenology, it is found that the contribution of parameter uncertainty to total uncertainty is, on average, more than twice as large as the uncertainty from structure. A second estimate, based on a comparison of two different calibration approaches for multiple models leads to a very similar result. We conclude that improvement of crop models requires as much attention to parameters as to model structure. | ||
| 546 | _aText in English | ||
| 591 | _aRettie, F.M. : No CIMMYT Affiliation | ||
| 597 |
_dNational Key Research and Development Program _dUnited States Department of Agriculture (USDA) _dNatural Science Foundation of China (NSFC) _dPriority Academic Program Development of Jiangsu Higher Education Institutions ( _dDeutsche Forschungsgemeinschaft (DFG) _dResearch Council of Finland _dBundesministerium für Bildung und Forschung (BMBF) _dMinistero dell'Agricoltura, della Sovranità alimentare e delle Foreste (MASAF) _dMinistry of Education, Youth and Sports (MEYS) _dCommonwealth Scientific and Industrial Research (CSIRO) |
||
| 650 | 7 |
_aCrop modelling _2AGROVOC _92623 |
|
| 650 | 7 |
_aStructures _2AGROVOC _918463 |
|
| 650 | 7 |
_aParameters _2AGROVOC _939696 |
|
| 700 | 1 |
_aPalosuo, T. _92657 |
|
| 700 | 1 |
_aMielenz, H. _939697 |
|
| 700 | 1 |
_aBuis, S. _92634 |
|
| 700 | 1 |
_aThorburn, P.J. _91786 |
|
| 700 | 1 |
_aAsseng, S. _91568 |
|
| 700 | 1 |
_aDumont, B. _91582 |
|
| 700 | 1 |
_aFerrise, R. _91585 |
|
| 700 | 1 |
_aGayler, S. _91775 |
|
| 700 | 1 |
_aGhahramani, A. _929877 |
|
| 700 | 1 |
_aHarrison, M.T. _939698 |
|
| 700 | 1 |
_aHochman, Z. _94037 |
|
| 700 | 1 |
_aHoogenboom, G. _94150 |
|
| 700 | 0 |
_aMingxia Huang _939699 |
|
| 700 | 0 |
_aQi Jing _939700 |
|
| 700 | 1 |
_aJustes, E. _917277 |
|
| 700 | 1 |
_aKersebaum, K.C. _91776 |
|
| 700 | 1 |
_aLaunay, M. _939701 |
|
| 700 | 1 |
_aLewan, E. _939702 |
|
| 700 | 0 |
_aKe Liu _939703 |
|
| 700 | 0 |
_aQunying Luo _91605 |
|
| 700 | 1 |
_aRettie, F.M. _8001714439 _gSustainable Agrifood Systems _926536 |
|
| 700 | 1 |
_aNendel, C. _92654 |
|
| 700 | 1 |
_aPadovan, G. _918325 |
|
| 700 | 1 |
_aOlesen, J.E. _91780 |
|
| 700 | 1 |
_aPullens, J.W.M. _929562 |
|
| 700 | 0 |
_aQian, B. _918564 |
|
| 700 | 1 |
_aSeserman, D.M. _939704 |
|
| 700 | 1 |
_aShelia, V _98595 |
|
| 700 | 1 |
_aSouissi, A. _917241 |
|
| 700 | 1 |
_aSpecka, X. _939705 |
|
| 700 | 0 |
_aJing Wang _91646 |
|
| 700 | 1 |
_aWeber, T.K.D. _926537 |
|
| 700 | 1 |
_aWeihermüller, L. _939706 |
|
| 700 | 1 |
_aSeidel, S.J. _939707 |
|
| 773 | 0 |
_tAgricultural and Forest Meteorology _gv. 372, art. 110697 _dAmsterdam (Netherlands) : Elsevier, 2025. _x0168-1923 _wG444454 |
|
| 942 |
_cJA _n0 _2ddc |
||
| 999 |
_c69070 _d69062 |
||