000 02191nab a22003257a 4500
001 68971
003 MX-TxCIM
005 20250620160437.0
008 250611s2024 -us|||p|op||| 00| 0 eng d
022 _a0006-341X
022 _a1541-0420 (Online)
024 8 _ahttps://doi.org/10.1093/biomtc/ujad042
040 _aMX-TxCIM
041 _aeng
100 1 _aSahin, Ö.
_939386
245 1 0 _aHigh-dimensional sparse vine copula regression with application to genomic prediction
260 _aUnited Kingdom :
_bOxford University Press,
_c2024.
500 _aPeer review
520 _aHigh-dimensional data sets are often available in genome-enabled predictions. Such data sets include nonlinear relationships with complex dependence structures. For such situations, vine copula-based (quantile) regression is an important tool. However, the current vine copula-based regression approaches do not scale up to high and ultra-high dimensions. To perform high-dimensional sparse vine copula-based regression, we propose 2 methods. First, we show their superiority regarding computational complexity over the existing methods. Second, we define relevant, irrelevant, and redundant explanatory variables for quantile regression. Then, we show our method’s power in selecting relevant variables and prediction accuracy in high-dimensional sparse data sets via simulation studies. Next, we apply the proposed methods to the high-dimensional real data, aiming at the genomic prediction of maize traits. Some data processing and feature extraction steps for the real data are further discussed. Finally, we show the advantage of our methods over linear models and quantile regression forests in simulation studies and real data applications.
546 _aText in English
650 7 _aGenomics
_91132
_2AGROVOC
650 7 _aForecasting
_2AGROVOC
_92701
650 7 _aData
_2AGROVOC
_99002
650 7 _aRegression analysis
_2AGROVOC
_95834
650 7 _aSelection
_2AGROVOC
_94749
650 7 _aBiometry
_2AGROVOC
_99446
700 1 _aCzado, C.
_939387
773 0 _dUnited Kingdom : Oxford University Press, 2024.
_gv. 80, no. 1, art. ujad042
_tBiometrics
_x0006-341X
942 _2ddc
_cJA
_n0
999 _c68971
_d68963